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1. EXECUTIVE SUMMARY 

Airborne mobile ad hoc network (MANET) environments require a quick and lightweight 
method for authentication.  These constantly changing airborne networks (AN) need some way 
to identify trustworthy users without a third-party involved.  One possible answer to these 
requirements is the zero-knowledge proof method.  Zero-knowledge proof systems provide an 
interactive approach for an entity to prove the possession of private knowledge without revealing 
any information about it.  Successful challenge/response interactions between a Prover and 
Verifier provide a confidence level of trust to the Verifier that the Prover indeed possesses the 
private information.  The fact that the private knowledge is never revealed provides benefits 
towards achieving a protocol that is secure against eavesdroppers.  The desirable characteristics 
in a zero-knowledge proof system for airborne MANETs are (1)  low amount of information (i.e. 
bits per transaction) transferred between parties, (2)  low number of iterations of the protocol 
needed to establish trust, and (3)  low probability that an untrustworthy party is able to establish 
trust.  Characteristics (1) and (2) provide a lightweight protocol, while characteristic (3) ensures 
that the protocol is strong. 

Since zero-knowledge proof systems require a verifier to check that the information 
received from the prover exhibits knowledge of the private input, the base problem (for which 
the private input is the solution) must be easily verifiable.  However, for the protocol to be hard 
to cheat, we must have a base problem that is difficult to solve from scratch.  This leads us to 
consider base problems that fall in the class of NP-complete problems – computationally 
expensive decision problems in which a positive solution can be checked in polynomial-time.  
This report investigates the graph theory subset of the class of NP-complete problems and their 
use as base problems for zero-knowledge proof systems.  In particular, the problems examined 
most in-depth are all related to either the sub-graph isomorphism problem or the graph coloring 
problem.   

In this paper, several approaches are formulated into a zero-knowledge proof system, and 
their characteristics are examined.  Examples of the following graph problems are given:  sub-
graph isomorphism graph isomorphism, independent set, longest path problem, Hamiltonian 
cycle problem, graph 3-coloring, equitable 3-coloring, satisfiability, and graph partitioning. 

Considering the problem classes discussed, the least promising problem is the 
satisfiability problem, due to very efficient algorithms that are able to solve enormous problem 
instances very quickly.  The most promising group appears to be the sub-graph isomorphism 
class.  The zero-knowledge proof systems associated with this class of problems are relatively 
lightweight in comparison with the other problem classes, and several of the problems in the 
class have many difficult instances and few efficient algorithms.  The protocols have average 
strength in terms of the proof systems for graph-based problems.  In comparison, the graph 
coloring class has many difficult instances for the problems, but the existing zero-knowledge 
proof systems are relatively easy to cheat.  This then implies that the proof systems are not as 
strong as those in the sub-graph isomorphism class.    
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2. INTRODUCTION 

In an airborne networking (AN) environment, the mobility of the network users necessitates an 
agile authentication system.  Zero-knowledge proof systems allow an interaction between parties 
to determine trustworthiness in a quick and effective manner.  In order to make these interactions 
as fast and secure as possible, they are most often based on problems from the NP-complete 
class, which contains many graph theory problems.  A strong and lightweight zero-knowledge 
protocol must satisfy the following criterion:  it must have a small number of bits transferred 
between parties, it must require few iterations to achieve a given trust level, and it must be 
difficult for a cheater to pass as trustworthy. 

This report is outlined as follows.  Section 2 continues to provide the necessary 
background information in graph theory, complexity theory, and zero-knowledge proof systems.  
Sections 3 through 5 discuss individual problems that zero-knowledge proof systems can be 
based on.  Section 6 presents our conclusions and future work.  Section 7 lists the relevant 
references, and the appendix expands upon that list to provide an annotated bibliography. 

 

2.1 Graph Theory Background 

This section is meant as a guide to some of the graph theoretic terms and concepts employed in 
this report.  For a more extensive reference, it is recommended that the reader consult a textbook 
such as Diestel‟s Graph Theory (Diestel 2006). 

A graph is a pair         such that   is a subset of    , where   is the set of 
vertices and   is the set of edges in the graph.  Vertices can also be called nodes.  An edge is 
incident to a vertex if the vertex is one of the edge‟s endpoints.  Two vertices are adjacent (also 
called neighbors) if they are connected by an edge.  The degree of a vertex (or valency) is the 
number of edges incident to it.  An adjacency matrix representation of a graph is a matrix in 
which the rows and columns represent the vertices and an entry equal to 1 in row   and column 
  implies the existence of an edge between vertices   and  , while an entry equal to 0 implies 
that there is no edge between   and  .   

In discussing graphs, we use the following terms.  A simple graph is a graph in which 
there is at most one edge between distinct vertices and there are no edges from a vertex to itself 
(called a loop).  We will only deal with simple graphs in this report.  The complement   

      of a graph         is the graph in which     and       is an edge in   if and only 
if it is a non-edge in  , i.e.                   .  A regular graph is a graph in which 
every vertex has the same degree.  A labeled graph is a graph with labels (distinct or not distinct) 
placed on the vertices or the edges.  A weighted graph has edge labels that denote a weight on an 
edge.  These weights could represent distance or some other measure.  An unweighted graph has 
no labels on the edges.  This could also be defined as a graph with all edge weights equal to 1.  
The empty graph is the graph         with    .  A complete graph is a graph in which 
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every edge possible is present, i.e. for every pair of distinct vertices      , there is an edge 
       . 

There are many terms for describing the structures present within a graph.  A sub-graph 
           of a graph         is a graph in which      and     .  We denote that    is 
a sub-graph of   by writing     .  An induced sub-graph            of a graph         
is a sub-graph of   in which                    .  To indicate an induced sub-graph, we 
write         .  A path is a sequence of vertices and edges such that no vertices and no edges 
are repeated.  A cycle is a path with the exception that the first and last vertices are the same.  A 
Hamiltonian cycle or path is a cycle or path that travels through every vertex in the graph.  The 
length of a path or cycle is the number of edges.  An independent set is a set     in a graph 
        such that the edge set of      is an empty set.  A clique is the complement of an 
independent set, i.e. a sub-graph            of         such that                  . 

Much of this report utilizes the concept of a graph isomorphism.  Two graphs         
and            are isomorphic if there exists a bijective function              such that 
        if and only if               .  Less formally, two graphs are isomorphic if they 
exhibit the same structures.  A sub-graph isomorphism is an isomorphism from a graph   to a 
sub-graph     . 

 
2.2 NP-Completeness  

This section is an introduction to some of the theory of NP-completeness and complexity theory 
that is utilized in this report.  For a more extensive reference, it is recommended that the reader 
consult a textbook such as Skiena‟s Algorithm Design Manual (Skiena 2008). 

The complexity classes involved in this report are primarily the classes P (Polynomial-
time) and NP (Non-deterministic Polynomial).  Because we will not discuss Turing machines in 
this report, we will state the somewhat less formal definitions of the complexity classes.   The 
class NP is the class of decision problems for which any yes-instance has a solution that is 
verifiable in polynomial time.  The class P contains all decision problems that can be solved in 
polynomial time, and hence also have solutions that can be verified in polynomial time, implying 
that P   NP.   

A problem L in the class NP is in the subclass of NP-complete problems if every problem 
in NP can be reduced to the problem L in polynomial time.  A reduction from problem K to 
problem L is an algorithm which takes as input an arbitrary instance of problem K and outputs an 
instance of problem L.  Given this definition, it is clear that the class of NP-complete problems 
contains the hardest problems in the class NP, as an easy solution for one NP-complete problem 
leads to an easy solution for all problems in the class NP. 

Because of the work published by Cook (Cook 1971), which proves that satisfiability is 
the first NP-complete problem, proving an NP-complete problem is somewhat easier than the 
definition implies.  As Cook proved that satisfiability is reducible to any problem in NP, in order 
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to prove a problem is in the class of NP-complete problems, we need only prove that a known 
NP-complete problem L reduces to our problem.  Then through Cook‟s theorem and following 

the chain of reductions from satisfiability to L, we have shown that every problem in the class 
NP reduces to our problem. 

 
2.3 Zero-Knowledge Proof Systems 

This section is an introductory guide to some of the theory and concepts of zero-knowledge 
proof systems that are used in this report.  For a more extensive reference, it is recommended 
that the reader consult a textbook such as Simmons‟s Contemporary Cryptology (Simmons 
1992).  

We begin with the notion of an interactive proof system.  An interactive proof system is 
an interaction between two participants, called the prover and the verifier, in which the prover 
attempts to prove some fact (or knowledge of some private input) to the verifier.  An interactive 
proof system is formally defined as a protocol based on a decision problem which satisfies the 
following properties: 

Completeness:  Each yes-instance of the decision problem leads to acceptance by the 
verifier with probability at least       for any constant    , where   is the 
size of the problem instance. 

Soundness:  Each no-instance of the decision problem leads to rejection by the verifier 
with probability at least       for any prover (honest or cheating). 

A zero-knowledge proof system is an interactive proof system with an additional 
requirement:  the zero-knowledge property must be satisfied.  The zero-knowledge property 
ensures that the verifier cannot gain any information from the interaction with the prover that 
could not have been determined alone.  This also guarantees that any eavesdropper cannot gain 
knowledge by listening to the conversation.  In a zero-knowledge proof system, the interaction 
begins with the prover presenting a commitment to some information about the graph, which is 
followed by a challenge from the verifier.  The challenge consists of a request for specific 
information about the problem instance.  To prove that the zero-knowledge property is satisfied 
in such an interaction, we use simulators.  This proof method of the zero-knowledge property is 
structured as follows: 

1. Verifier simulates the prover 
 Given the set of possible challenges, the verifier randomly and uniformly 

decides which challenge to commit to a correct response to. 
 

2. Verifier simulates the verifier 
 Using a probabilistic algorithm, the verifier decides which challenge to 

send. 
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 If the challenge does not match what was committed to in step 1, the 
verifier backs up the algorithm to the state it was in at the beginning of 
step 1 and starts the simulation over. 
 

If the process above generates a conversation that is the same as one that could have been 
generated with an honest prover (one that is different from the verifier), then the zero-knowledge 
property is satisfied. 

An easily understood example of a zero-knowledge proof system illustrates that the 
prover knows how to solve a Rubik‟s cube (the algorithm is the private input).  The verifier 
scrambles a Rubik‟s cube and hands it to the prover.  The prover turns away so that the verifier is 
unable to see the cube, and then attempts to solve the puzzle.  If the prover knows the algorithm, 
this will be an easy task and the prover will quickly hand a solved Rubik‟s cube back to the 

verifier.  If the prover does not know the algorithm, the prover may or may not be able to solve 
the puzzle.  Most likely, a prover that does not know how to solve a Rubik‟s cube will not easily 

solve the puzzle quickly several times in a row, and so the verifier will (eventually) see that the 
prover does not know the algorithm.  A prover that does know the algorithm will quickly solve 
the cube as many times as the verifier wishes.   

An important component of a zero-knowledge proof system is the commitment.  Zero-
knowledge proof systems usually require that the prover has some method of “locking up” 

information about the problem instance prior to receiving the verifier‟s challenge.  Otherwise, 

the prover would be able to manufacture a response to the verifier‟s challenge, and this new 

response may or may not be consistent with the problem instance.  For example, in the Rubik‟s 

cube zero-knowledge proof system discussed in the last paragraph, the verifier may require that 
the prover remain in the same room so that the verifier can be sure that the prover returns the 
same Rubik‟s cube given out in the beginning.  The structure of a zero-knowledge proof system 
is such that a response to any one challenge does not reveal the private input, but responding to 
all challenges reveals the private input.  Hence the prover must be able to simultaneously commit 
to all challenge responses, but reveal each one individually. 

There are several different methods for the prover to commit by.  The simplest to 
understand (but least practical to implement) is to use locked boxes.  The prover breaks up the 
graph into pieces, which are stored in locked boxes.  Then the prover determines which boxes to 
open by observing the verifier‟s challenge.  Note that the problem type will determine how the 
graph is broken up and stored.  Another method of commitment is through encryption by keys.  
If the prover is able to generate keys, then the prover may encrypt the graph and send the 
encrypted copy to the verifier.  Then depending on the verifier‟s challenge, the prover sends keys 

for decrypting the information necessary to answer the challenge.  The methods used vary and is 
usually determined by the implementation of the proof system. 
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3. METHODS, ASSUMPTIONS AND PROCEDURES 
 

3.1 SUB-GRAPH ISOMORPHISM CLASS 

The sub-graph isomorphism class contains many NP-complete problems that can be obtained by 
a reduction from the sub-graph isomorphism problem.  Figure 1 illustrates the structure of the 
sub-graph isomorphism problem and its related subproblems.  Note that the chart lists the most 
general problem at the top (sub-graph isomorphism) and each subproblem allows more problem 
restrictions than the superproblem does.  For example, graph isomorphism is a more specific 
instance of sub-graph isomorphism in that it requires that     .  Thus if a problem is NP-

complete, all problems that contain it as a subproblem must also be NP-complete, but not vice 
versa.  

 

3.1.1 Sub-graph Isomorphism Problem 

The general sub-graph isomorphism problem is stated as follows:  Given two graphs    and   , 
is there a sub-graph   of    such that    is isomorphic to  ?  The sub-graph isomorphism 
problem (SGI) is an NP-complete problem (Garey and Johnson 1979), and has many well-known 
subproblems associated with it.   

 
3.1.1.1 Algorithms 

In the world of NP-complete problems, there are two ways to define what makes a “good” 

algorithm.  The first is a theoretical definition, in which the computational complexity of the 
problem is reduced for either the general class of all instances or for a specific class of 
subproblems.  The second is an experimental definition.  Using different methods of attacking 
the problem, we try to create an algorithm that will solve most instances of the problem in a short 
amount of time, but may not be very efficient in some rarely-occurring worst-case instance.  
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Figure 1:  The subproblem structure of the sub-graph isomorphism problem 
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With many useful applications, there is a significant amount of research being done on solving 
the sub-graph isomorphism problem using both approaches. 

 

Theoretical Results: 

Algorithms classified as theoretical results are aimed at lowering the computational complexity 
bounds that currently exist for solving the sub-graph isomorphism problem.  These algorithms 
generally are not implemented or tested against each other on actual instances of the problem.  
Since the general sub-graph isomorphism problem is known to be NP-complete, these algorithms 
tend to restrict the problem in some manner in order to make the problem easier to solve. 

Many algorithms exist for solving the sub-graph isomorphism problem on specific 
classes of graphs.  For example, when considering the class of planar graphs we can reduce the 
running time significantly.  Using a dynamic programming method, Dorn has developed an 
algorithm with running time on the order of          where the graph H has k nodes and G has n 
nodes (Dorn 2009).  This implies that if we consider restricting the problem so that the number 
of nodes in the sub-graph H is fixed, then       becomes a constant and hence the algorithm is 
linear. 

Another restriction on the set of graphs that has seen good results is to consider only 
graphs of bounded tree-width.  To define tree-width, we need a few other definitions first (Alon, 
Yuster and Zwick 1995). 

 

Definition 1:  Let G = (V, E) be a graph.  A tree-decomposition of G is a pair 
                   

where T is a tree and           is a collection of subsets of V such that: 
1.      , 
2.               such that         , and 
3.     , when we restrict T to the vertex set           , we still have 

a connected tree. 
 

Definition 2:  Let G = (V, E) be a graph.  Let the set of all tree-decompositions of G be 
denoted TD(G).  The tree-width of G is: 

          
       

    
   

         

 
One of the most recently published randomized algorithms for solving the sub-graph 

isomorphism problem is shown to have running time           when the tree-width of H is at 
most t (Fomin, et al. 2009)1. 

                                                           
1 “      notation hides factors polynomial in the instance size n and the parameter k” - (Fomin, et al. 2009) 
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While theoretical results are useful in determining what is possible and impossible in 
terms of creating new algorithms for solving the sub-graph isomorphism problem, these methods 
are not always practical or useful for implementation and applications.  The algorithm may 
appear fast in terms of Bachmann-Landau notation (Big-Oh notation), but this can often be 
misleading.  For example, if an algorithm has computational complexity     , it is possible that 
the exact running time has some enormous constant term, say        .  In this case, even though 
the algorithm is linear, a running time of        

  is going to be very costly.  For solving 
specific instances of the problem, it may be more efficient to consider an algorithm that has 
worse computational complexity in a worst case scenario, but good experimental results on large 
databases of graphs. 

 

Experimental Results: 

In terms of algorithms that are practical to use, it is necessary to review the results obtained by 
implementing the algorithm and testing it on several databases of graphs.  While it is not possible 
to test the algorithm on every possible graph, we can often get a good idea of how useful an 
algorithm will be by running it on specific classes of graphs and instances that are known to be 
difficult.  The algorithms discussed in this section currently appear to be the most popular for 
comparing new algorithms against, and so are generally understood to be the fastest algorithms 
currently available.  Also included are several new algorithms that appear to perform quite well 
against the existing front-runners. 

VF2 and Ullman‟s Algorithm are the most popular choices for efficient sub-graph 
isomorphism solvers.  Published this year (2010) are two different filtering algorithms that seem 
promising.  Filtering algorithms aim to reduce the number of possible target vertices in the larger 
graph for each vertex in the smaller graph to be mapped to under an isomorphism.  By repeatedly 
reducing the set of target vertices, the filtering aims to eventually obtain a target set of size one, 
in which case the mapping is clear (Solnon 2010). 

Ullman‟s algorithm, published in 1976, is surprisingly still a popular and fast sub-graph 
isomorphism solver.  This algorithm uses a backtracking method to solve the problem in an 
efficient manner, in most cases (Ullmann 1976).  However, it is often costly and outperformed 
by newer methods when it comes to larger instances. 

Arguably the best solver available, VF2 (also referred to as VFLib) is an algorithm for 
solving both the graph and sub-graph isomorphism problems.  By defining certain feasibility 
rules, VF2 is able to reduce the number of possible options and repeatedly extend a partial 
matching until the correct sub-graph is found (Cordella, et al. 2004). 

The filtering method ILF (Iterative Labeling Filtering) begins with an initial labeling of 
the vertices in both graphs by some invariant property such as vertex degree.  An invariant 
property of a graph is one that remains constant under isomorphisms.  From this it is 
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immediately clear that two vertices with different labels cannot possibly be mapped to one 
another.  The algorithm then expands the lists as multisets (sets with repetition allowed) by 
adding the labels of adjacent nodes.  This process is repeated as many times as desired.  At each 
step, the algorithm uses an auxiliary bipartite graph to determine the compatibility of two 
vertices (Zampelli, Deville and Solnon 2010 (to appear)). 

A new algorithm, AllDifferent-Based Filtering, introduced by Christine Solnon (Solnon 
2010) uses a method known as “local all different” (LAD).  For each vertex u in our sub-graph 
H, and for each possible target vertex v in G for u, the algorithm constructs a bipartite graph with 
vertex set (N(u), N(v)), where N(u) is the set of all vertices that are adjacent to u in H.  The edges 
in this bipartite graph are of the form (u’, v’), where v’ is a possible target vertex for u’.  Then the 
algorithm searches for a matching in this bipartite graph (an independent set of edges) that 
covers all of N(u).  If no such matching exists, v is no longer considered as a possible target     
for u. 

An alternative approach to the problem is to formulate it in a way that takes advantage of 
efficient solvers from other problems and areas.  One such approach formulates the sub-graph 
isomorphism problem as an integer linear program (LeBodic, et al. 2009).  We define the 
variables of this linear program as follows.  We define G = (N, L) and H = (V, E). 

 For all pairs of vertices          , define       
               
              

  

 For all pairs of edges            , define         
               
              

  

We define the constraints as follows: 

 Every vertex of H maps to a unique vertex of G 

                           (1) 
  

 Every edge of H maps to a unique edge of G   

                                (2) 

 Every vertex of G is targeted by at most one vertex of H 
    
                          (3)  
 

 If     then any edge starting in   maps to an edge starting with    
 
                                  (4) 
 

 If     then any edge ending in   maps to an edge ending in       
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                                   (5) 

Combining these, it is clear that if we find a solution to this set of constraints then we have a 
graph-sub-graph isomorphism.  Hence, the objective function of this integer linear program is 
irrelevant.  If there is some additional information (for example, if the problem is geometric), 
then there may be a useful objective function (such as minimizing the distances between nodes).  
However if not, we can set the objective function to be some irrelevant constant function.  This 
gives us the general linear program: 

Max         

Subject to                    

                       

                      

            

       

            

                               

and             

        

            

           
   

Figure 2:  Integer Linear Program for SGI 

Formulating the linear program is now done, and all that is needed is an efficient solver 
to work on it.  The testing done in (LeBodic, et al. 2009) is on very application-specific instances 
(architectural floor plans) making it difficult to evaluate in terms of the more general instances 
seen in the graph databases. 

 
Testing of Experimental Algorithms: 

While most newly published algorithms are compared against either or both of Ullman‟s 

Algorithm and VF2, most are not compared to any other recently developed methods.  One 
difficulty in comparing the algorithms is that only recently has it become popular to use publicly 
available graph databases for testing in a consistent manner, making it difficult to evaluate and 
interpret the results that are reported. 

The two main databases that are available for testing sub-graph isomorphism algorithms 
are the GraphBase database and the VFLib database.  Several authors also have created their own 
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classes of graphs for testing, such as the scale-free networks database created in (Zampelli, 
Deville and Solnon 2010 (to appear)).  The Stanford GraphBase2 database provides generators to 
create various different classes of graphs and is available free (Knuth 1993).  The VFLib Graph 
Matching Library was created specifically for the graph isomorphism and sub-graph 
isomorphism problems and is also available free of charge (P. Foggia 2001). 

On most large instances of the sub-graph isomorphism problem, VF2 outperforms 
Ullman‟s Algorithm (see, for example, Figure 15 in (Lipets, Vanetik and Gudes 2009).  For this 
reason, many authors compare their algorithm only with VF2.  One analysis and comparison of 
VF2, ILF, and LAD, can be found in (Solnon 2010).  This paper shows that LAD usually 
outperforms both VF2 and ILF when run on both the GraphBase database and the VFLib 
database.  However, one thing that is clear is that no solver performs best in every case. 

 

3.1.1.2 Existing Zero-Knowledge Proofs 

The zero-knowledge proof systems for the sub-graph isomorphism problem take as public input 
two graphs,    and   , and as private input a sub-graph isomorphism       , where   is a 
sub-graph of   .  The simplest zero-knowledge proof system for sub-graph isomorphism, ZKP1, 
is illustrated in Figure 3.  The prover (P) randomly permutes the graph    to obtain an 
isomorphic graph           and then sends     to the verifier (V).  V then chooses a random 
bit  , which is sent to P.  If    , P sends   to V and V checks that     was formed correctly 
from    and  .  If    , then P sends    to V and V checks that          is a sub-graph of 
    and is isomorphic to   .  Depending on the P‟s response to the challenge, V will decide 

whether to accept P and continue in another iteration of the protocol or to reject P and stop 
communication. 

Both isomorphisms (  and  ) are private in the beginning, but if the verifier chooses 
    the entire isomorphism   is revealed, whereas if the verifier chooses     only parts of 
the isomorphism   are revealed.  In neither case is any of the isomorphism   revealed to the 
verifier.  If    , the verifier learns the isomorphism  , but is unaware of any information 
regarding the sub-graph‟s location.  If    , the verifier learns information about the structure 
of the sub-graph, but does not know the isomorphism   and hence knows nothing about the 
location of the sub-graph. 

It is also possible to construct a similar zero-knowledge proof system that involves hiding 
the permuted graph in a larger graph (Grigoriev and Shpilrain 2008).  However, in this 
modification of the protocol, either choice that the verifier can make for   requires that the 
prover send     to the verifier, which leaves the larger graph as an unnecessary addition to the 
protocol. 

                                                           
2 Available at http://www-cs-faculty.stanford.edu/~knuth/sgb.html 
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3.1.1.3 Discussion of Existing Protocols 

Considering the algorithms that exist for the graph isomorphism problem (Nauty, VF2, etc.), the 
protocol ZKP1 is not very secure.  For example, the verifier could use an effective graph 
isomorphism algorithm after receiving the graph     in step 2.  This enables the verifier to 
uncover the isomorphism,          .  If the verifier chooses to send     to the prover, 
then          is revealed by the prover, and so the verifier has available both     and 
        .  This would allow the verifier to discover      , and using the graph isomorphism 
algorithm again would determine  , the prover‟s private input. 

 
3.1.1.4 Establishing a Better Protocol 

A slight modification to ZKP1 to establish a more secure protocol involves committing to the 
permuted graph that is transferred in step 2.  This alteration works fine until the last step that 

Figure 3:  ZKP1 for the sub-graph isomorphism problem example 

Common Input:   The bull graph (  ) and the Payley graph (  ) of 
order 9 (shown)  

Private Input:   An isomorphism   from   to a sub-graph of   (  
is shown in red)  

 

 

Prover Verifier 

1. Chooses an isomorphism          .   
2. Sends  ’  to the verifier. 

 

 

 

 

 

 

3. Chooses a random bit  . 
4. Sends   to the prover. 

      

5. Sends   to the verifier.  

6. Checks that          ’  and that   is a 
valid isomorphism. 

      

5. Sends         to the verifier.  
6. Checks that         is a sub-graph of  ’  

that is isomorphic to   . 

 

 

 

 

 

  

  
 

 

 

 

 

  

  
 

 

 

  

  

  

 

Approved for Public Release; Distribution Unlimited.



 

13 
 

occurs, in the case that the verifier chooses    .  If the verifier chooses    , then the prover 
must reveal where the isomorphic sub-graph          is located in      .  In order for the 
verifier to check that          is in fact a sub-graph that is isomorphic to   , the verifier must 
be able to solve this particular instance of the graph isomorphism problem very quickly.  Thus 
for this change in protocol to be effective, we must be sure that the smaller graph involved is one 
in which some graph isomorphism algorithm works well, and yet the problem instance as a 
whole must be difficult for all sub-graph isomorphism algorithms, which is not an easy task. 

Another small adjustment to fix the faults described is illustrated in Figure 4, referred to 
as ZKP2.  In this protocol, the prover sends the permutation    as well as decommitment 
information to reveal the edges of the sub-graph         .  The verifier would then be able to 
check that          is isomorphic to   .  Fortunately, even with increasing the amount of 
information transferred, the zero-knowledge property is still satisfied.  Since the verifier does not 
know   or   individually, the verifier is unable to determine   or   alone from the composition 
  .  Also, since the verifier is only shown the entries of the permuted adjacency matrix that 
correspond to edges of the sub-graph, the verifier cannot uncover the initial permutation   unless 
the verifier is able to solve the sub-graph isomorphism problem.   

The protocol ZKP2 is a valid zero-knowledge proof system for the sub-graph 
isomorphism problem.  (Note:  All proofs of zero-knowledge protocols in this report are based 
on the proof style of Blum (Blum 1986).) 

 
Claim:  ZKP2 is a zero-knowledge proof system for the sub-graph isomorphism problem. 
Proof:     

Completeness:  If the prover has a yes-instance   of SGI, then the verifier will accept   
with probability 1. 
 
Soundness:  If the prover has a no-instance   of SGI, the prover will be caught only when 
the verifier chooses    .  Since   is chosen uniformly and randomly by the verifier, the 
probability that the verifier will reject   is     in each round.  This implies that the 

probability that the verifier does not reject   after   rounds is at most   

 
 
 

    . 
 
Zero-Knowledge Property:  Suppose the verifier is attempting to extract useful 
information from his conversation with the prover.  Then the verifier can, in the same 
manner, extract the same information even without the aid of the prover.  In each round 
he does the following: 
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Begin. 

 
Verifier simulates the prover.  The verifier flips a fair coin and, according to the 
outcome of the coin, commits to either the graph    or a copy of    embedded 
into an arbitrary  -vertex graph.     is committed to in the same way the prover 
would have done so.  The sub-graph is committed to in the way the prover would 
have committed to such an isomorphic sub-graph in   .  Then, acting as the 
prover, the verifier presents the committed information.  Now he takes the other 
side.  
 

Figure 4:  ZKP2 for the sub-graph isomorphism problem example 

Common Input:   The Payley graph (  ) of order 9 and the bull graph (  ). 

Private Input:   An isomorphism   from    to a sub-graph   of    
(shown in red).  

 
 

Prover Verifier 

  

 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
    

 
 
 
 
 
 
 
 

 

1. Chooses an isomorphism          .   
2. Creates an adjacency matrix   for     
3. Sends   to the verifier. 

  

 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
    

 
 
 
 
 
 
 
 

 

 
(commitment) 

 

4. Chooses a random bit  . 
5. Sends   to the prover. 

      

6. Sends   and the decommitment 
information for   to the verifier. 

 

7. Checks that             and that   is a 
valid isomorphism. 

      

6. Sends the decommitment 
information for the entries of A 
that correspond to edges of 
         to the verifier. 

7. Sends the permutation    to 
the verifier.   

 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
    

 
 
 
 
 
 
 
 

 

 

 
8. Checks that          is isomorphic to   , 

and that          is what was revealed. 
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Verifier simulates the verifier.  The verifier guesses randomly and uniformly 
whether to request the graph or an isomorphic sub-graph.  Because the verifier has 
no way to guess with any advantage whether the committed matrix contains the 
graph or an isomorphic sub-graph (because the choice is random), there is a 50% 
chance that he requests an option (graph or sub-graph) that the verifier, in the 
guise of prover, can supply.  If not, the verifier backs up the simulation to the 
state it was in at the start of this round and restarts the entire round (verifier 
simulating the prover). 
 
End. 

 

In an expected 2 passes through each round, the verifier will obtain the information 
without the help of the prover.  Thus the interaction does not help the verifier do 
something with the prover in expected polynomial time that he could not as well have 
done without the prover in expected polynomial time.   
 
Consider the zero-knowledge proof system ZKP2 for the sub-graph isomorphism 

problem.  This protocol shows the basic structure of all of the protocols in this section.  Figure 5 
illustrates the protocol in the case that the prover is attempting to cheat.  The prover does not 
have a valid isomorphism from    to a sub-graph of   , and the verifier must catch this. 

In order for these zero-knowledge proof systems to be of use, we must determine the total 
number of bits to be transferred.  In ZKP2, the graphs that we are considering are simple, 
undirected graphs.  This implies that the adjacency matrices will be symmetric with zeros along 
the diagonal and with all entries equal to either 0 or 1.  Thus in a graph with   vertices, the 
prover only needs to transmit   

 
  entries of   to the verifier, where      .  Hence step 3 

requires the transmission of   
 
  entries, each of which is one bit.  In step 5, the verifier sends one 

bit.  If the verifier chooses    , the prover must send the isomorphism  .  We can send this in 
list form, and so we need        bits.  If the verifier chooses    , the prover must identify 
the isomorphism          and must send the permutation    to the verifier.  This requires 
sending decommitment information for the edges corresponding to          and also sending a 
permutation in list form with   entries. 

 
When considering the maximum number of bits that will be necessary in ZKP2 not 

including what is needed for commitment methods, the number transferred will be: 

      
 
               (6) 
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If the maximum amount of information to be transmitted is 10 kilobits, then we must have: 

     
 
                     (7) 

               (8) 

Thus the largest instance that could be considered would have at most 134 vertices in the larger 
of the two graphs.  Note that this maximum occurs given any choice that the verifier makes for  .   
 

Figure 5:  ZKP2 for sub-graph isomorphism with cheating prover example 

Common Input:   The Payley graph (  ) of order 9 and the bull graph (  ). 

Private Input:   An invalid isomorphism   from    to a sub-graph   of 
   (shown in red).  

 
 

Prover Verifier 

  

 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
    

 
 
 
 
 
 
 
 

 

1. Chooses an isomorphism          .   
2. Creates an adjacency matrix   for     
3. Sends   to the verifier. 

  

 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
    

 
 
 
 
 
 
 
 

 

 
(commitment) 

 

4. Chooses a random bit  . 
5. Sends   to the prover. 

      

6. Sends   and the decommitment 
information for   to the verifier. 

 

7. Checks that             and that   is a 
valid isomorphism. 

      

6. Sends the decommitment 
information for the entries of A 
that correspond to edges of 
         to the verifier. 

7. Sends the permutation    to 
the verifier.   

 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
   

   
   
    

 
 
 
 
 
 
 
 

 

 

 
8. Sees that          is not isomorphic to    

and so rejects the prover. 
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3.1.2 Graph Isomorphism Problem 

 

The graph isomorphism problem (GIP) is stated as follows:  Given two graphs    and   , is 
there an isomorphism        ?  The GIP is known to belong to the class NP, but it has not 
been determined to be NP-complete.  It is conjectured that the GIP falls somewhere outside of 
the classes P and NP-complete (Conte, et al. 2004). 

 
3.1.2.1 Algorithms 

The three main algorithms for solving the graph isomorphism problem are Nauty (1981), 
Ullman‟s algorithm (1976), and VF2 (2004).  All three algorithms are able to solve instances of 

the problem at remarkable speeds.  However, VF2 seems to consistently outperform Ullman‟s 

algorithm (Cordella, et al. 2004), so the focus of this section will be on Nauty and VF2. 

The Nauty algorithm, created by Brendan McKay (McKay 1981), uses a large amount of 
group theory to determine a canonical labeling of the graphs (Fortin 1996).  The main idea of the 
algorithm is then centered on the fact that if the labelings of the two graphs are the same, then the 
graphs must be isomorphic.  VF2, on the other hand, relies upon backtracking and pruning the 
search space according to some specified feasibility rules (Cordella, et al. 2004). 

In comparing VF2 and Nauty, neither algorithm clearly outperforms the other.  In the 
results of a set of tests comparing the two algorithms on three different classes of graphs ranging 
from 20 to 1,000 vertices, Nauty appears to be more effective on random graphs, while VF2 is 
more effective on 2D-mesh graphs and bounded valence graphs (Cordella, et al. 2004).  In 
further testing, it is shown that on all benchmark classes of graphs that were selected with a 
maximum of 1100 vertices, at least one of VF2 and Nauty can solve the problem instance in less 
than one second (Foggia, Sansone and Vento 2001). 

While it has not yet been determined which classes of graphs the algorithms Nauty and 
VF2 struggle with, one idea has appeared in the literature (Fortin 1996), (Hernandez-Goya and 
Caballero-Gil 2004).  It is possible to create hard instances of the GIP by swapping the endpoints 
of two different edges in a highly symmetric regular graph.  It is reported that the resulting graph 
will be several hundred times harder for Nauty (Fortin 1996). 

 
3.1.2.2 Discussion of Existing Protocols 

Given the efficiency of the existing algorithms, the graph isomorphism problem will be 
difficult to use as a base problem for a secure protocol.  However, we will discuss two types of 
zero-knowledge proof systems for the graph isomorphism problem.  The first type of zero-
knowledge protocol that exists for the graph isomorphism problem is identical to that of the sub-
graph isomorphism problem.  The only difference between protocols for the two problems is that 
the sub-graph is no longer a proper sub-graph, but the entire graph, i.e.     .   
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The second type of zero-knowledge proof system works only for the graph isomorphism 
problem.    The protocol takes as public input two graphs    and    and as private input an 
isomorphism         .  First, the prover creates an isomorphic copy     of    (say     

     ) and sends the copy to the verifier.  The verifier chooses a challenge bit and sends that 
choice to the prover.  If the verifier sent a challenge bit equal to zero, then the prover sends   to 
the verifier and the verifier checks that          .  If the verifier sent a challenge bit equal to 
one, then the prover sends    to the verifier, who checks that              (Goldreich, 
Micali and Wigderson 1991), (Hernandez-Goya and Caballero-Gil 2004), (Simari 2002), 
(Grigoriev and Shpilrain 2008). 

As mentioned, the ease with which the current algorithms are able to solve exactly the 
graph isomorphism problem makes these protocols mostly useless.  Unless a class of difficult 
instances is determined, the protocols are not secure, even though they satisfy the necessary 
properties for a zero-knowledge proof system. 

 
3.1.3 Graph Clustering Problem 

The graph clustering problem (GCP) is a more general case of both the graph isomorphism and 
the graph non-isomorphism problem (the complement of the graph isomorphism problem).  The 
GCP as defined as follows (Goldreich 1996):  Given a sequence of graphs           , and a 
sequence of positive integers           , does there exist a partition          of     such that: 
 

1.           for           . 
2. For all       and every       , the graphs    and    are isomorphic. 
3. For all         and all      and all     , the graphs     and    are not 

isomorphic. 

In other words, we are looking to determine if under the equivalence relation of graph 
isomorphisms, the sizes of the equivalence classes are represented by the given sequence of 
positive integers. 

 
3.1.3.1 Existing Zero-Knowledge Proofs 

The following noninteractive zero-knowledge protocol for GCP relies upon several foundational 
theorems.  The first theorem states that we can construct a monotone formula that determines the 
value of                      in polynomial-time, where           is a Boolean function 
with each    being a Boolean variable that returns true if and only if at least   of the   variables 
   are true.  The second and third theorems state that there exists a perfect zero-knowledge proof 
system for all instances of true monotone formulae over statements related to graph (non-
)isomorphism (DeSantis, Di Crescenzo and Persiano, et al. 1994). 
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The zero-knowledge proof system discussed below, published by (DeSantis, Di Crescenzo and 
Goldreich, et al. 1999), takes as public input a sequence of   graphs and a sequence of   positive 
integers. 

1. The prover P proves that the equivalence relation has at least   equivalence classes. 
 

Determining that at least   –    graphs are non-isomorphic to all earlier graphs in the 
initial sequence proves this statement.  To accomplish this, we use the first and third 
theorems to prove in zero-knowledge that                           , where 
                                       . 

 
2. P proves that the equivalence relation has at most   equivalence classes. 
 

Determining that at most    –    –    –     graphs are isomorphic to all earlier graphs 
in the initial sequence proves this statement.  To accomplish this, we use the first and 
second theorems to prove in zero-knowledge that                             , 
where                                    . 

 
3. P proves that at least a certain number of equivalence classes have a given minimum 

size. 
 

We first define     ,         such that                        , and 
define                     for each        .  P proves the statements:  
 
                                                                      
for         

 
This is done by proving in zero-knowledge                            where:  
                                                    . 

 
4. P proves that at least a certain number of equivalence classes have a given maximum 

size. 
 

Using the same definitions as in step 3, P proves the statements: 
 
                                                           for         
 
This is accomplished by proving in zero-knowledge    

                      where: 
                                                      . 
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To prove that this is in fact a noninteractive zero-knowledge protocol, we note that    and 
   hold if and only if there are exactly   equivalence classes in the sequence of graphs.  Also, 
through basic algebraic manipulation and induction, it is easily proven that statements    and    
hold for every   if and only if the   equivalence classes have the correct sizes as specified by the 
sequence of positive integers (DeSantis, Di Crescenzo and Goldreich, et al. 1999).  Since the 
protocol is a composition of zero-knowledge protocols based on the        function, the 
protocol is also zero-knowledge. 

 
3.1.3.2 Discussion of Problem 

It does not appear to have been discussed in the literature as to whether GCP is an NP-complete 
problem or not.  It is clear that it lies in the class NP, as given a true instance of the GCP, a 
witness for the problem is a set defining the partitions together with a set of isomorphisms from 
each graph to another in the same partition class, and this witness can be easily verified.  We do 
note, however, that when our sequence of positive integers is       then the problem is an 
instance of the graph non-isomorphism problem, and when our sequence of positive integers is 
    then the problem becomes an instance of the graph isomorphism problem.  Thus we can see 
that GCP is at least as hard as the graph isomorphism and graph non-isomorphism problems, and 
that determining the complexity of the graph (non-)isomorphism problem will determine the 
complexity of the graph clustering problem. 

While no information has been found yet as far as algorithms for solving the graph 
clustering problem, it should be noted that the problem can be solved by repeatedly applying any 
algorithm for solving the graph isomorphism problem.  In the worst case, each graph would be in 
a separate equivalence class.  This would then imply that any graph isomorphism algorithm 
would need to be applied to the instance fewer than     –       times in order to determine the 
equivalence classes (each graph needs only to be compared to one graph in each equivalence 
class determined before).  Thus in instances where the decision version of the graph 
isomorphism problems involved can be determined in under   seconds, the entire graph 
clustering problem instance could be solved in under     seconds.  Due to the significantly 
increased amount of information needed for the problem, namely the sequence of graphs, the 
graph clustering problem is most likely not a good candidate for a security protocol. 

 
3.1.4 Independent Set Problem 

The independent set problem (ISP) is stated as follows:  Given a graph   and an integer  , does 
  contain an independent set of size  ?  This question is the decision version of an optimization 
problem known as the maximum independent set problem.  The optimization (maximum) 
independent set problem is as follows:  Given a graph  , what is the size of a maximum 
independent set in  ?  The optimization problem is an NP-hard problem and the decision version 
is a well-known NP-complete problem (Garey and Johnson 1979). 
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Another NP-complete problem that is equivalent to the ISP is the maximum clique 
problem (MCP).  The MCP is stated as follows:  Given a graph   and an integer  , does   
contain a clique of size  ?  The equivalence of the two problems can be seen clearly when we 
observe that the complement of an independent set is a clique and vice versa.  Thus given any 
instance of the ISP, we can easily convert it to an instance of the MCP merely by considering the 
complement of the graph in question. 

A problem closely related to the ISP is the  -independent set problem (KIS).  The 
problem is stated as follows:  Given a graph   and positive integers   and  , does there exist a  -
independent set (a set of vertices such that between any two distinct vertices in the set, the length 
of the shortest path between them is at least  ) of size  ?  The KIS is an NP-complete problem – 
a fact that is clearly seen when we observe that the ISP is a subproblem of the KIS (Desmedt and 
Wang 2003). 

 
3.1.4.1 Algorithms 

Several near-optimal algorithms have been proposed to deal with the ISP and the MCP.  In a 
relatively recent publication, it was reported that the most competitive algorithms are DLS 
(Dynamic Local Search), RLS (Reactive Local Search), and VNS (Variable Neighborhood 
Search) (Grosso, Locatelli and Pullan 2008).  While these algorithms are geared towards the 
MCP, the equivalence of the MCP and the ISP allows the algorithms to be used easily on either 
problem. 

DLS-MC, a DLS variant, was introduced in 2006 (Pullan and Hoos 2006) and is based on 
stochastic local search.  It assigns penalty values to the vertices in order to help the algorithm 
avoid cycling around local optima.  The creators conclude from their testing that the DLS-MC 
outperforms several older algorithms and improves upon the previously existing DLS algorithms.  
The RLS algorithm was improved upon in 2007, and so has been replaced by R-Evo and RLS-
Evo.  These modified RLS algorithms both begin by obtaining an initial estimate, after which a 
better solution is searched for.  They employ a model-based approach in which the current 
solution is used to provide information about possible locations of a better solution (Battiti and 
Brunato 2007).  An efficient algorithm that often outperforms RLS is KLS.  KLS is based on the 
technique of variable depth search, a variation of local search, and proceeds by  adding and 
removing vertices from the current clique in order to find a larger one (Katayama, Hamamoto 
and Narihisa 2005). 

The general result of the published material on ISP or MCP algorithms is that there is no 
“best” algorithm for every instance of the problem.  Fortunately, there is a standard set of 
benchmark graphs that most algorithms are tested and compared on.  These benchmarks, known 
as the DIMACS benchmark instances for the maximum clique problem, originated from The 
Second DIMACS Implementation Challenge:  1992-1993 (Johnson and Trick 1996).  The 
DIMACS graphs range in size from under 100 vertices to 4,000 vertices, however it is not clear 
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what determines the difficulty level of the graphs.  Reviewing the published results, it appears 
that almost every DIMACS benchmark graph can be solved for the best known solution in less 
than 200 seconds. 

 
3.1.4.2 Existing Zero-Knowledge Proofs 

The zero-knowledge proof systems for the independent set problem take as public input a graph, 
 , and a positive integer  , and as private input a set       , where   is an independent set.  A 
zero-knowledge proof system (ZKP3) for the ISP is illustrated in Figure 6 (Desmedt and Wang 
2003).  The prover (P) chooses randomly an isomorphism   to permute the graph   and then 
sends a commitment to this new graph,     , to the verifier (V).  V then chooses a random bit  , 
which is sent to P.  If    , P sends   to V along with the decommitment information for     , 
and V checks that      was formed correctly from   and  .  If    , then P sends the 
decommitment information for         to V, who checks that         has all entries equal to 
zero.  This then implies that   is an independent set. 

 
3.1.4.3 Discussion of Existing Protocols 

When we consider the soundness property of ZKP3, a cheating prover with a no-instance of the 
problem will only be caught when the verifier chooses      .  As the verifier chooses    
randomly and uniformly from the set      , the probability that a cheating prover will be caught 
in each round is    .  Thus the probability that a verifier will not reject a cheating prover after   

rounds is   

 
 
  

, and so the soundness property is satisfied.  The protocol ZKP3 also satisfies the 
completeness and zero-knowledge properties and therefore is a zero-knowledge proof system 
(Desmedt and Wang 2003). 

Because of the equivalence between the independent set problem and the maximum 
clique problem, ZKP3 can be slightly modified to give a valid zero-knowledge proof system for 
the MCP.  The only change that needs to be made is in the last step that occurs after a verifier 
chooses      .  Instead of checking that every transferred matrix entry is zero, the verifier must 
check that every entry that is not along the diagonal is equal to one.  This then demonstrates that 
the sub-graph revealed is in fact a complete graph, as every pair of distinct vertices has an edge 
between them. 
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The protocol ZKP3 can also be altered to handle the KIS.  First, define the set    to be 
the set of all pairs of vertices       such that the length of the shortest path between   and   in 
  is at most    , and let        .  Then we define           .  A set         is a  -
independent set in   if and only if    is an independent set in   .  By using    as the common 
input to ZKP3, we have a zero-knowledge proof system for the KIS (Desmedt and Wang 2003). 

 
 
 

Common Input:   The wheel graph ( ) of order 9 (shown) and a 
positive integer    . 

Private Input:   An independent set of size   (shown in red) 
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1. Chooses an isomorphism        .   
2. Creates an adjacency matrix   for  ’ 
3. Sends   to the verifier. 

  

 
 
 
 
 
 
 
 
 
   
   
    

   
   
   
   

     
   
   
   

   
   
   

     
   
   
   

     
   
   
   

   
   
   

     
   
   
   

     
   
   
    

 
 
 
 
 
 
 
 

 

 

(commitment) 
 

4. Chooses a random bit  . 
5. Sends   to the prover. 

      

6. Sends   and the decommitment 
information for   to the verifier. 

 

7. Checks that          . 

      

6. Sends the decommitment 
information for         to the 
verifier. 

  

 
 
 
 
 
 
 
 
 
   
   
    

   
   
   
   

     
   
   
   

   
   
   

     
   
   
   

     
   
   
   

   
   
   

     
   
   
   

     
   
   
    

 
 
 
 
 
 
 
 

 

 

7. Checks that all entries of         are 
equal to 0. 

 
Figure 6:  ZKP3 for the independent set problem example 
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3.1.5 Longest Path Problem 

The longest path problem (LPP) is stated as follows:  Given a graph   and a positive integer  , 
does   contain a path of length  ?  (We are using the assumption that the length of a path is the 
number of edges of the path.)  Figure 7 illustrates an example of the LPP.  The more commonly 
known version of the longest path problem is an optimization problem that asks for a witness for 
the value                   .  Our phrasing of LPP is merely the decision version that 
corresponds to the optimization problem.  The LPP is an NP-complete problem, and contains the 
Hamiltonian path problem as a subproblem.  However, the LPP is a more difficult problem than 
the Hamiltonian path problem as the longest path in the graph does not necessarily travel through 
every vertex.  It is an easy reduction from the Hamiltonian path problem to the LPP, and hence 
the NP-completeness is clear.  The optimization version of the problem is NP-hard.  There are 
few graph classes that are known to be easily solvable (in polynomial time).  One class of graphs 
that can be solved quickly is the class of directed acyclic graphs (Garey and Johnson 1979). 

 
 

   
        

   

      

Consider the complete binary tree on 7 vertices, as shown. 

 

 

 

 

 

The maximal paths in the tree are: 

1. (3, 1, 4)   length = 2 
2. (3, 1, 0, 2, 5)  length = 4 
3. (3, 1, 0, 2, 6)  length = 4 
4. (4, 1, 0, 2, 5)  length = 4 
5. (4, 1, 0, 2, 6)  length = 4 
6. (5, 2, 6)   length = 2 

In this example, the maximum path length is 4.  Hence we have: 

A witness for this value is the path              . 
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Figure 7:  Longest path problem example 
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3.1.5.1 Algorithms 

There are few algorithms that are capable of coping with the LPP.  Even approximation 
algorithms are difficult to come by, as the optimization problem associated with the LPP is 
thought to lie outside of the class of problems APX - the class of optimization problems for 
which polynomial-time approximation algorithms with approximation ratios bounded by 
constants exist (Björklund and Husfeldt 2003).  In fact, it has been proven that the longest path 
problem must lie outside of APX unless P = NP (Karger, Motwani and Ramkumar 1997).   

It seems that one of the best performing algorithms currently is a hybrid depth-first-
search algorithm that produces either an exact solution to the problem instance in             
time, where                          for some  , or an            -approximation, for 
any   that is an unbounded function (Vassilevska, Williams and Woo 2006).  Another possible 
option is applying a sub-graph isomorphism algorithm to the problem, since the length of the 
longest path will be available as common knowledge in the zero-knowledge proof system 
considered for this problem. 

 
3.1.5.2 Establishing a Protocol 

Because the LPP is a subproblem of the SGI, we can modify ZKP2 slightly to obtain ZKP4, a 
zero-knowledge proof system for the longest path problem.  The common inputs to the protocol 
are a graph,  , and a positive integer,  , which represents the length of a longest path in  .  The 
private input is the longest path itself.   

Figure 8 illustrates a zero-knowledge proof system, ZKP4, for an instance of the LPP.  
The prover (P) chooses randomly an isomorphism   to permute the graph   and then sends a 
commitment to this new graph,     , to the verifier (V).  V then chooses a random bit  , which 
is sent to P.  If    , P sends   to V along with the decommitment information for     , and V 
checks that      was formed correctly from   and  .  If    , then P sends the decommitment 
information for      to V (where      represents the entries corresponding to the edges of the 
path that is the private input) and V checks that      forms a path of the specified length. 

Note that in ZKP4 the prover does not need to send any information in addition to the 
edges of the path to the verifier.  The permutations used by the prover are unnecessary 
information for the verifier, as checking that the edges revealed form a path is a simple task 
without the knowledge of the permutations.  The prover also does not need to identify the 
vertices that are endpoints on the path, as the verifier can determine these from the revealed 
entries by examining which rows and columns have one and only one entry equal to 1. 
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3.1.6 Hamiltonian Cycle Problem 

The Hamiltonian cycle problem (HCP) is stated as follows:  Given a graph  , does   contain a 
Hamiltonian cycle (a cycle that passes through every vertex of the graph once and only once)?  
The HCP is one of the best known NP-complete problems, and is used often in proving other 
problems to be NP-complete (Garey and Johnson 1979).  There are several closely related NP-
complete problems, such as the Hamiltonian path problem, the directed Hamiltonian cycle 
problem, and the Hamiltonian path between two points.  Some cases of the HCP are known to be 

Common Input:   The complete binary tree ( ) of order 7 (shown) 
and a positive integer    . 

Private Input:   A path of length   (shown in red) 
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7. Checks all entries of      are equal to 0. 

 

  

 

 

 

 

 

 

 

 

 

 

3 4 

 

5 

 

6 

 

1 

 

2 

 

0 

3 4 

 

5 

 

6 

 

1 

 

2 

 

0 

Figure 8:  ZKP4 for the longest path problem example 
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easy (solvable in polynomial-time), such as if   has no vertex with degree greater than two or if 
  is a line graph. 

 
3.1.6.1 Traveling Salesman Problem 

The HCP has a very well-known subproblem:  The Traveling Salesman Problem (TSP).  The 
TSP is stated as follows:  Given a graph    with weighted edges, find a Hamiltonian cycle with 
the minimum total weight possible.  Given an instance of the HCP, it is easy to create an instance 
of the TSP.  Let   be an instance of HCP.  Construct    from   as follows:  Let            
and define the edge set as                     .  Assign edge weights as follows:  For 
       , 

         
              
        

      (9) 

If the minimum tour weight of    is equal to       , then the graph   has a Hamiltonian 
cycle.  The TSP is an NP-hard optimization problem, and the decision version of the problem 
(does    have a tour with total weight less than or equal to some value  ) is an NP-complete 
problem (Garey and Johnson 1979). 

 
3.1.6.2 Algorithms 

Since the Hamiltonian cycle problem is a specific case of both the sub-graph isomorphism 
problem and the traveling salesman problem, any algorithm for solving the SGI or the TSP will 
also work to solve the Hamiltonian cycle problem.  As the TSP is such a well-known and well-
researched problem, it is highly likely that the best performing algorithms for the HCP will in 
fact be TSP algorithms. 

A popular TSP algorithm is the Lin-Kernighan (LK) algorithm.  The LK algorithm starts 
with an arbitrary trail that reaches all vertices of the graph (and may include passing through 
some vertices more than once).  It then switches paths on the trail in order to shorten it if possible 
(Marinakis, Migdalas and Pardalos 2005).   

Concorde, an exact algorithm for the TSP, is able to solve optimally 106 out of the 110 
instances of the TSP in the TSPLIB3 (a publicly available library of problem instance for the 
TSP).  Of these instances, the largest involves 15,112 cities (Skiena 2008).  It is also reported 
that for the six instances from TSPLIB with between 1000 and 1200 nodes, an algorithm known 
as the LKH algorithm (Helsgaun 2000) is able to obtain a solution that is no more than 0.2% 
from the optimal in less than 20 seconds (Johnson and McGeoch, Experimental Analysis of 
Herustics for the STSP 2002).  Because of this, the instances considered for testing of the 
algorithms for The Eighth DIMACS Implementation Challenge (2001) did not include any with 

                                                           
3 Available at http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html 
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fewer than 1000 nodes (Johnson and McGeoch 2002).  These benchmark instances appear to be a 
mixture of real-world and randomly generated problems. 

 
3.1.6.3 Existing Zero-Knowledge Proofs 

The zero-knowledge proof systems for the HCP have as common input a graph,  , that contains 
a Hamiltonian cycle, and as private input a Hamiltonian cycle,  , in   (note that   may contain 
more than one Hamiltonian cycle).  Figure 9 illustrates a zero-knowledge proof system, ZKP5, 

Common Input:   The platonic graph of the cube ( ) of order 8 
(shown)  

Private Input:   A Hamiltonian cycle (shown in red) 
 

 

Prover Verifier 

  

 
 
 
 
 
 
 
 
   
   
   

   
   
   

  
  
  

   
   
   

   
   
   

  
  
  

   
   

   
   

  
   

 
 
 
 
 
 
 

 

1. Chooses an isomorphism        .   
2. Creates an adjacency matrix   for  ’ 
3. Sends   to the verifier. 
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4. Chooses a random bit  . 
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6. Sends   and the decommitment 
information for   to the verifier. 

 

7. Checks that          . 
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7. Checks that all entries of      are equal to 
1 and that  is a Hamiltonian cycle. 
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Figure 9:  ZKP5 for the Hamiltonian cycle problem example 
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for an instance of the HCP (Blum 1986).  The prover (P) chooses randomly an isomorphism   to 
permute the graph   and then sends a commitment to this new graph,     , to the verifier (V).  
V then chooses a random bit  , which is sent to P.  If    , P sends   to V along with the 
decommitment information for     , and V checks that      was formed correctly from   and 
 .  If    , then P sends the decommitment information for      to V (where      represents 
the entries corresponding to the edges of the cycle that is the private input) and V checks that 
     forms a Hamiltonian cycle. 

The zero-knowledge proof system ZKP5 is just one possible protocol for the HCP.  A 
similar protocol has been published, and the main difference is a reliance on hashing to hide the 
information that is committed to in ZKP5 (Caballero-Gil and Hernandez-Goya 2006).  There is 
also available a third protocol that assumes that families of collision-free hash functions exist in 
order to provide a statistical noninteractive zero-knowledge argument with preprocessing 
(Damgard 1992). 
 
3.1.6.4 Discussion of Existing Protocols 

While it may seem tempting to use the same HCP protocol (ZKP5) for the TSP, unfortunately 
the zero-knowledge property will no longer be satisfied.  Because the graph has weighted edges, 
when the prover reveals the edges of the cycle the verifier will learn information about the edge 
weights associated with the cycle.  For example, if every edge has a different weight in the 
graph, the verifier will easily be able to identify the TSP tour that is supposed to remain hidden.  
To create a valid zero-knowledge proof system for the TSP, we must transform the given 
problem into an instance of the sub-graph isomorphism problem.  Given a weighted graph 
          for the TSP (  being the set of edge weights associated with the graph), we 
construct a new graph    as follows.  For every edge        with       , we replace   
with   , a path with   edges (both endpoints of    are the endpoints of  ).  This is illustrated in 
Figure 10.  The problem is now to find a path in the new graph of length equal to the minimum 
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Figure 10:  An example of the transformation from the traveling salesman 

problem to the sub-graph isomorphism problem 

Approved for Public Release; Distribution Unlimited.



 

30 
 

TSP weight in the original graph. 

 
3.1.7 Minimum Bandwidth Problem 

The minimum bandwidth problem (MBP) is stated as follows:  Given a graph   and a positive 
integer  , find a linear arrangement of the vertices (a bijective numbering               ) 
such that                        .  This decision problem is an NP-complete problem, 
and the associated optimization problem (find the minimum value of                      ) 

is an NP-hard problem (Garey and Johnson 1979).  Figure 11 illustrates an example of the MBP. 

 

3.1.7.1 Algorithms 

Very few algorithms are able to cope with the MBP efficiently.  Both exact and approximate 
algorithms exist for the problem.  As of 2008, the best exact algorithm has time complexity 
           , where   is a polynomial function (Cygan and Pilipczuk 2008).  It seems to be an 

Consider the graph shown.  We want an ordering of the vertices      and   such that the bandwidth of 
the ordering is at most 1. 

 

 

 

In this example, the possible orderings are: 

1. [A, B, C]   Bandwidth = 2  

2. [A, C, B]  Bandwidth = 2 

3. [B, C, A]  Bandwidth = 2  

4. [B, A, C]  Bandwidth = 1 

5. [C, A, B]   Bandwidth = 1 

6. [C, B, A]  Bandwidth = 2 

So the bandwidth desired is obtained by both ordering 4 and ordering 5. 
 

 

 

 

 

 

 

A 

B C 

Figure 11:  Minimum bandwidth problem example 
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open problem as to whether the problem can be solved in             time, where   is a 
polynomial function (Woeginger 2003).  As for approximation algorithms, as of 2003 the best 
known approximation algorithm has an                        approximation ratio 
(Woeginger 2003).  In 2005, a hybrid algorithm was presented that produces either an ordering 
that obtains, in         time, the optimal minimum bandwidth or, in polynomial time, an 
                                  -approximation (Vassilevska, Williams and Woo 2006). 

A set of useful benchmark instances are available for the minimum bandwidth problem.  
The Harwell-Boeing Sparse Matrix Collection (Duff 1992) presents many instances in a range of 
sizes that originate from real-world applications.  While these instances are not generated in any 
uniform manner, there are several classes that the algorithms all seem to struggle with.  For 
example, the “Cannes” matrices, with instances named can_###, stem from aircraft design.  This 
class of instances appears to be difficult for many algorithms when the order is larger than 200.  
When the order is greater than 800, as in can_838, most algorithms are unable to solve it exactly 
(Lim, Rodrigues and Xiao 2006).  It would be worth investigating what makes these instances so 
difficult for the algorithms. 

 
3.1.7.2 Translation to Sub-graph Isomorphism 

The minimum bandwidth problem can be viewed as a subproblem of the sub-graph isomorphism 
problem.  Because of this property, any zero-knowledge proof system for the sub-graph 
isomorphism problem can be applied to the minimum bandwidth problem.  Let   be a graph with 
minimum bandwidth  .  Define     to be the path of length   with additional edges added 
between every pair of vertices that are at distance at most   apart (on the original path).  Then 
the minimum bandwidth problem can be restated as follows:  Given a graph   on   vertices, find 
an isomorphism            , where       

 .  The discovered isomorphism from   to a 
sub-graph of     

  will then give a linear order for      with bandwidth at most  . 

For the example illustrated in Figure 3-10, we consider the path   
 .  In this case, there 

exists an isomorphism   that maps      to     
  .  One possible mapping is given by:  

          ,       , and           (10) 

Thus the isomorphism   gives us a linear ordering identical to ordering number 4 in the example.  
We may also consider the problem of finding a linear order for      with bandwidth at most 2.  
In this case, we consider the path   

 .  It is clear that in this case, any of the orderings illustrated 
can be mapped isomorphically to a sub-graph of   

 . 

 This process of transforming the MBP to the SGI allows us to employ the same zero-
knowledge proof system for the MBP.  The common inputs to the protocol are a graph   and the 
value   of the minimum bandwidth of the graph.  The private input is a linear ordering of the 
vertices that has bandwidth  .  The prover permutes the path     

 , and sends a commitment to 
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this to the verifier.  The verifier then chooses randomly whether to check if the isomorphism was 
constructed correctly or if there is an isomorphic copy of the graph   in     

 .   

 
3.1.8 Summary  

The sub-graph isomorphism class contains many problems that may be useful as base problems 
for zero-knowledge proof systems.  The minimum bandwidth problem, for example, appears to 
be a difficult problem with relatively few efficient algorithms to solve it.  The same is true of the 
longest path problem.  The Hamiltonian cycle problem or the Hamiltonian path problem may be 
difficult as well, however the longest path problem intuitively seems harder.  The Hamiltonian 
problems require that all vertices be members of the required cycle or path, whereas in the 
longest path problem a solver must not only find a path of the required length but must also 
determine which vertices the path traverses.   

One problem that will almost certainly not be useful in creating a secure protocol is the graph 
isomorphism problem.  The current algorithms (Nauty and VF2, for example) are far too 
efficient at solving large problem instances.  In order to create a secure protocol off of the graph 
isomorphism problem, we would need to use extremely large graphs (over 10,000 nodes), which 
then dramatically increases the amount of information to be transferred between prover and 
verifier. 
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3.2 GRAPH COLORING CLASS 

The graph coloring class of problems contains three important problems:  graph  -colorability, 
graph 3-colorability, and equitable 3-colorability.  All three problems are NP-complete.  Graph 
3-colorability is proven NP-complete by a reduction from 3-SAT (a well-known NP-complete 
subproblem of the satisfiability problem), which then proves the NP-completeness of graph  -
colorability.  Equitable 3-colorability is proven NP-complete by a reduction from graph 3-
colorability easily by adding isolated vertices to a 3-colorable graph to obtain a graph that can be 
equitably 3-colored.  The subproblem structure of the graph coloring class is illustrated in Figure 
12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.1 Graph Coloring Problem 

The graph coloring decision problem is stated as follows:  Given a graph   and a positive integer 
 , is it possible to color the vertices of   with   colors so that every edge has different colored 
endpoints?  More formally, is there a function            such that if        , then 
         ?  Another alternative is to view the graph   -coloring problem as an optimization-
type decision problem.  This formulation of the problem is as follows:  Given a graph  , 
partition the vertices into   sets so that  , the number of edges with both endpoints in the same 
partition class, is minimized.  Then   is  -colorable if and only if the minimum value obtained is 
   .  The associated chromatic number problem asks for the minimum number of colors 
needed to color      so that if         then          .  The solution to the problem is the 
chromatic number of the graph  , and is denoted by     . 

Much work has been done in exploring which classes of graphs have polynomial-time 
optimal coloring algorithms.  For example, the general problem can be solved in polynomial time 

Graph  -Colorability 

Graph  -Colorability 

Equitable  -Colorability 

Figure 12: The graph coloring class 
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for any comparability graph (an undirected graph that is transitively orientable) and any chordal 
graph (a graph with no induced cycle with length greater than 3) (Golumbic 1980).  We also note 
that when considering a graph with maximum degree at most  , the decision problem becomes 
trivial due to Brooks‟ Theorem, which states that             for any graph   that is neither a 
complete graph nor an odd cycle (Diestel 2006).  For the class of random graphs       , there 
exist linear-time algorithms for optimal coloring when           , where   is the edge 
probability associated with the random graph (Coja-Oghlan and Taraz 2004). 

 
3.2.1.1 Algorithms 

Much work has been done on developing and improving efficient algorithms for the graph 
coloring problem.  While there is an abundance of algorithms focused on achieving near-optimal 
colorings of a graph, there are very few exact algorithms.  However, the near-optimal algorithms 
can in many cases achieve colorings of a large number of graphs that use the minimum possible 
number of colors.  The algorithms are either based on a local search method, such as tabu search, 
or on a branch-and-bound-type pruning of the entire search space.  Some of the most commonly 
appearing algorithms in the literature are DSATUR, Tabucol, GH, VNS and Amacol. 

Instead of relying on a local search, DSATUR depends on a specific ordering of the 
vertices.  While many improvements have been made to the algorithm, the original method 
colors the vertices according to the number of colors already present in their neighborhoods.   
The DSATUR algorithm is continuously being improved upon and is still competitive with the 
current algorithms (Brélaz 1979).  Other similar algorithms based on specific vertex orderings, 
such as RLF, often appear as a piece of a larger algorithm instead of as a standalone method like 
DSATUR. 

While over 20 years old, Tabucol, a local search algorithm based on tabu search, remains 
very popular.  Tabucol first assigns a random k-coloring to the graph, usually with a significant 
number of conflicting edges (edges with endpoints of the same color).  The algorithm then 
improves this coloring until it has reached the maximum number of iterations allowed (Galinier 
and Hertz 2006). 

The Variable Neighborhood Search algorithm (VNS) is similar to Tabucol, but modifies 
the searching method.  While Tabucol relies on tabu search, VNS uses several neighborhoods in 
order to avoid getting stuck at local optima (Avanthay, Hertz and Zufferey 2003).  Variable 
Space Search (VSS) is an improvement of VNS.  VSS expands upon the idea of considering 
many neighborhoods to also consider multiple objective functions and search spaces (Hertz, 
Plumettaz and Zufferey 2008).   

A very competitive algorithm is GH, a hybrid evolutionary algorithm, which relies upon 
a local search method and a crossover function.  The crossover function builds a new solution 
from two previously created partial solutions.  GH is quite competitive when it is able to 
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compute an answer under a given time constraint, however there are many instances where GH 
does not come up with any solution (Galinier and Hao 1999).   

Perhaps the newest algorithm that is worth considering is Amacol.  Amacol relies on a 
central memory solution that contains pieces of solutions and is continuously updated.  Using 
what is currently in the central memory solution, Amacol runs a local search method to improve 
and create a better solution, and then stores pieces of this new solution (Galinier, Hertz and 
Zufferey 2008).   

While there is no one reference that runs experiments on all four of these algorithms side-
by-side, there has been a set of experiments run comparing Tabucol, DSATUR, GH, and Amacol 
(Galinier, Hertz and Zufferey 2008), another set comparing DSATUR, Tabucol, RLF, and VNS 
(Galinier and Hertz 2006), and yet another set comparing VSS and Tabucol (Hertz, Plumettaz 
and Zufferey 2008).   

Almost all tests run used a specific benchmark sets of graphs, such as the graphs from 
The Second DIMACS Implementation Challenge:  1992-1993 (Johnson and Trick, Volume 26: 
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 1996), that are 
generally considered to be difficult (meaning that most algorithms struggle to find optimal 
solutions).  In most cases, the DIMACS graphs used contain either 500 or 1000 vertices.  Other 
classes of graphs were used as well, such as the flat graphs (each containing 1000 vertices).  VSS 
was able to obtain an optimal coloring on 16 out of 20 test graphs with a time limit of one hour.  
In the tests that did not produce optimal colorings, VSS produced colorings using at most five 
extra colors.  Similar results are shown for Tabucol, but with fewer optimal colorings.  
According to test results from July 2008, GH outperforms all of the other listed algorithms, 
except for the few cases where it is unable to determine a result under the time constraint (Hertz, 
Plumettaz and Zufferey 2008). 

 
3.2.1.2 Existing Zero-Knowledge Proofs 

Several zero-knowledge proof systems have been developed for the graph 3-colorng problem 
(G3C).  All proof systems take as public input a graph   and as private input  , a 3-coloring of 
the vertices of  .  In addition to the protocols discussed here, there are a few variations that have 
been published, such as a protocol that relies upon hiding the coloring through an isomorphic 
graph (Grigoriev and Shpilrain 2008) and non-interactive zero-knowledge proof systems (Blum, 
Feldman and Micali 1988), (Kurosawa and Takai 1992). 

Figure 13 illustrates ZKP6, a zero-knowledge proof system for G3C (Goldreich, Micali 
and Wigderson 1991).  In the protocol, the prover permutes the coloring of the graph and 
commits to it before sending it to the verifier.  The verifier then selects an edge from the graph 
randomly and uniformly, sends the edge choice to the prover, and then asks the prover to verify 
that the edge‟s endpoints have distinct colors. 
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A similar zero-knowledge proof system is ZKP7, illustrated in Figure 14.  The method of 
proof is the same, however it is run in parallel instead of sequentially.  The prover creates   
permutations of the coloring to commit to, while the verifier commits to a set of   edges to 
challenge the prover with.   

 

Common Input:   The Petersen Graph ( ) of order 10  

Private Input:   A 3-coloring   of      (as shown) 

 
 

Prover Verifier 

1. Chooses a permutation   of        .  
2. Permutes the coloring of      to obtain a new 

coloring,         . 
3. Sends a commitment to   to the verifier. 

 

 

 

 

 

6. Sends the decommitment information for the 
endpoints of   to the verifier. 
                     

 

 
 
 
 
 
 
 
 
 
 

4. Chooses randomly an edge   of the graph. 
5. Sends   to the prover. 

                     

            

 

 

 

7. Checks that the endpoints of   are colored 
with different colors.   

 

 

1 

2 

3 

4 5 

6 8 

9 10 

7 

Figure 13: ZKP6 for the graph 3-coloring problem example 
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3.2.1.3 Discussion of Existing Protocols 

If the prover is cheating and does not have a valid 3-coloring of   during ZKP6, then when the 
prover attempts to 3-color  , the coloring will have at least one edge with both endpoints colored 
the same.  The probability that the verifier will choose an edge that the prover has colored 
incorrectly can be as low as         .  This implies that the probability that the prover will be 
discovered as a cheater is as low as         , and hence the probability that a cheater will not be 
discovered in one round could be as high as           .  The number of iterations necessary 
to achieve a good confidence level in this protocol can therefore be extremely high.  To illustrate 
how bad this probability is, on a graph with only 1,000 edges, we would need to perform 4603 
iterations of the protocol in order to achieve a 99% confidence level.   

Common Input:   The Petersen Graph ( ) of order 10  

Private Input:   An 3-coloring   of      (as shown) 

 
 

 
Prover Verifier 

1. Chooses   permutations          of        .    
2. Permutes the coloring of      to obtain new 

colorings,            for all          . 
3. Sends a commitment to each    to the verifier. 

 

 

 

 

 

8. Sends the decommitment information for the 
endpoints of each    corresponding to each    
to the verifier. 
                   

 

 
 
 
 
 
 
 
 
 

6. Chooses randomly a sequence of t edges,   
                    , of the graph.   

7. Sends a commitment to   to the prover. 
                    
   
 
                             
 

 

 

9. Checks that the endpoints of each    are 
colored with different colors.     

 

 

1 
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3 

4 5 

6 8 

9 10 

7 

Figure 14: ZKP7 for the graph 3-coloring problem example 
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In ZKP7, the probability of catching a cheating prover increases to               in 
each round.  When we take           , this reduces to                  .  Thus merely 
by choosing   large enough, it is possible to achieve any desired confidence level in just one 
round (Goldreich and Kahan 1996).   

Now we compute the number of bits to be transferred during the two protocols discussed.  
In ZKP6, the prover does not need to send an adjacency matrix.  Instead, the prover sends an  -
element list in which the  th position of the list contains the color of vertex  .  Since there are 3 
possible colors, each entry requires at most 2 bits to be recognized.  The total number of bits 
needed to transmit the coloring will thus be at most    (not including commitment).  In step 5, 
the verifier needs to transmit the two vertices that identify each edge selected.  If there are   
vertices, then to represent a vertex the verifier will need at most       bits.  Since two vertices 
must be sent, the verifier will transmit at most         bits.  Thus not including what is needed 
for commitment, the total number of bits sent will be: 

                                (12) 

If the maximum amount of information that can be transmitted is 10 kilobits, then we must have: 

                        (13) 

                (14) 

Hence the largest graph that could be considered would need to have at most 4987 vertices. 

It is clear that in ZKP7, the amount of information needed to be transferred increases 
dramatically from ZKP6.  In ZKP7, again the prover will send an  -element list such that the  th 
position of the list contains the color of vertex  .  Since there are 3 possible colors, each entry 
needs at most 2 bits, and so again (like in ZKP6), the total number of bits to transmit the coloring 
will be at most    (not including what is needed for commitments).  However in this case there 
are   different colorings being sent, and so the total number of bits needed is at most    .  In step 
5, the prover must transmit the two vertices that identify each edge selected, as before, however 
the verifier must transmit a list of   edges, requiring that the verifier transmit          bits.  
Not including what is needed for commitments, the total number of bits sent during ZKP2 will 
be: 

                     (15) 

If the maximum amount of information to be transmitted is 10 kilobits, then we must have: 
                           (16) 

In any graph,          
 
 .  If we assume, as in the original publication of ZKP2 

(Goldreich and Kahan 1996), that           , then we must have that the above inequality 
simplifies to     .  This tells us that the graphs that we should be considering can have at 
most 10 vertices, which is not likely to be a very difficult graph coloring instance. 
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Also, if we desire a 99.99% probability of catching a cheating prover in one round, then 
we must have (when           ):    

                        (17)  

                 (18) 

Thus on problem instances with exactly 10 vertices, we can achieve the desired 
confidence level in one round while remaining under the upper limit of the number of bits to be 
transmitted.  However, these instances will be solvable quickly and so will not be of use in 
creating a secure protocol. 

 
3.2.2 Equitable Coloring Problem 

The equitable coloring problem (E3C) is formally stated as follows:  Given a graph  , color the 
vertices of   with as few colors as possible such that any two color classes differ in size by at 
most 1.  This problem is NP-complete, and the proof of this is fairly a straightforward reduction 
from graph coloring. 

Note that any equitable coloring algorithm is also a general graph coloring algorithm, and 
hence the E3C must be at least as hard as the G3C in terms of algorithms finding optimal 
solutions.  Because of this, there are no algorithms to be presented here that were not previously 
discussed in the general graph coloring section. 

 
3.2.2.1 Application to Zero-Knowledge Proofs 

Note that either of the previously discussed protocols could be applied to the E3C, as the E3C is 
a subproblem of the G3C.  In the zero-knowledge proof systems discussed for the G3C, ZKP6 
has a low probability of catching a cheating prover, while ZKP7 has a high amount of 
information to be transmitted.  To address these problems, we turn to the E3C.  

A zero-knowledge proof system, ZKP8, is illustrated in Figure 15.  The protocol is 
similar to that of the independent set problem, and takes as public input a graph   and as private 
input  , an equitable 3-coloring of  .  The graph must be committed to as a permuted adjacency 
matrix to hide the locations of the vertices in each color class, and the coloring must also be 
committed to (in a list format).  The verifier will choose to either check that the permutation was 
performed correctly or to check that a specified color class induces an independent set in the 
graph.  If the prover has an invalid 3-coloring, then when the verifier requests a color class at 
least one of the three color classes will not be independent.  Thus the probability that the verifier 
will catch a cheating prover will increase to   . 
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It is important to note that ZKP8 is only a valid zero-knowledge proof system for the 
E3C, not for the G3C.  If we consider ZKP8 as applied to the G3C, the prover is showing not 
only that one of the color classes is an independent set, but also the size,  , of the requested color 
class.  The transmission of the size of one color class from the prover to the verifier prevents the 
protocol from being a zero-knowledge proof system.  There is no way that a verifier could have 

Figure 15: ZKP8 for the equitable 3-coloring problem example 

Common Input:   The Petersen Graph ( ) of order 10  

Private Input:   An equitable 3-coloring   of      (as shown) 

 
 

 

Prover Verifier 
1. Chooses a permutation   of        .  Sets 

       .    
2. Chooses a permutation   of         
3. Creates an adjacency matrix A for       
4. Sends a commitment to A and      to the 

verifier. 

   

 
 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

    
    
    

   
   
   

   
   
   

    
    
    

   
   
 
 

 
 

 
 

   
   
 
 

 
 

 
 

    
    
 
 

 
 

  
   

 
 
 
 
 
 
 
 
 

            

 
 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

    
    
    

   
   
   

   
   
   

    
    
    

   
   
 
 

 
 

 
 

   
   
 
 

 
 

 
 

    
    
 
 

 
 

  
   

 
 
 
 
 
 
 
 
 

 

 
 
 
 

(commitment) 

5. Chooses a random bit  . 
6. Sends     to the prover. 

    7. Sends   and A to the verifier.  
8. Checks that A was made correctly from  . 

    

 
 
 
 
 
 

9. Sends the decommitment 
information for entries of    
and the entries of     
associated with the color class 
  to the verifier. 
 

  

 
 
 
 
 
 
 
 
 
 
   
   
   

   
   
   

    
    
    

   
   
   

   
   
   

    
    
    

   
   
 
 

 
 

 
 

   
   
 
 

 
 

 
 

    
    
 
 

 
 

  
   

 
 
 
 
 
 
 
 
 

 

7. Chooses          . 
8. Sends   to the prover. 

 

 
10. Checks that the vertices in the color class   

form an independent set. 
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determined alone that one of the color classes has size  , and so the proof of the zero-knowledge 
property using simulators would fail. 

We must consider now whether ZKP8 is more efficient than either ZKP6 or ZKP7.  First, 
we calculate the total number of bits that must be transferred.  Since the graphs we are 
considering in this example are simple, undirected graphs, the adjacency matrices will be 
symmetric with zeros along the diagonal and with all entries either 0 or 1.  Thus the prover only 
needs to transmit   

 
  entries of   to the verifier.  The transmission of the coloring needs    bits.  

Hence step 4 requires the transmission of   
 
     committed entries, each of which is one bit.  

In step 6, the verifier sends one bit.  If    , the prover must send the isomorphism  .  We can 
send this in list form, and so we will need        bits.  If    , the verifier must send an 
identifier for a color class.  Since there are three different color classes, this will require 2 bits.  
Then the prover must also send the decommitment information for the entries corresponding to 
edges within the specified color class.   

Not including what is needed for commitments, the total number of bits sent will be:     
       

 
                  (19) 

 

If the maximum amount of information to be transmitted is 10 kilobits, then we must have: 
      

 
                       (20) 

               (21) 

The largest graph to be considered would need to have at most 133 vertices. 

The protocol is more efficient than ZKP6 in terms of the number of rounds necessary to 
achieve an adequate confidence level.  ZKP8 requires 38 iterations to achieve a 99% chance of 
catching a cheating prover (recall that ZKP6 required 4603 iterations).  We also note that if it is 
possible to use as common input graphs in which it is difficult to produce even two independent 
color classes, the chance that the verifier can catch a cheating prover increases from     to    . 

Thus ZKP8 is a more efficient protocol for E3C than ZKP7, and also gives a better 
probability of catching a cheating prover than ZKP6 (and ZKP7 depending on what value of   is 
chosen).  All that remains is to prove that ZKP8 is in fact a valid zero-knowledge proof system. 

 
Claim:  ZKP8 is a zero-knowledge proof system. 
Proof:   

Completeness:  If the prover has a yes-instance   of E3C, then the verifier will accept   
with probability 1. 
 
Soundness:  If the prover has a no-instance   of E3C, the prover will be caught only if the 
verifier chooses    , and if the verifier selects a color class that is not independent.  
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Since   is chosen uniformly and randomly by the verifier, the probability that the verifier 
will reject   is     in each round.  This implies that the probability that the verifier does 

not reject   after   rounds is at most   

 
 
 

 .  When we repeat the protocol for    rounds, 

the probability that the verifier does not reject   is   

 
 
  

, which is asymptotically close to 

(and never exceeding)    . 
 
Zero-Knowledge Property:  Suppose the verifier is attempting to extract useful 
information from his conversation with the prover.  Then the verifier can, in the same 
manner, extract the information even without the aid of the prover.  In each round he does 
the following: 
 

Begin. 

 
Verifier simulates the prover.  The verifier flips a fair coin and, according to the 
outcome of the coin, commits to either the graph   or an arbitrary  -partition of   
vertices in which each partition class is an independent set.    is committed to in 
the same way the prover would have done so.  The partition is committed to in 
just the way the prover would have committed to such a partition in  .  Then, 
acting as prover, he presents the committed information to the verifier.  Now he 
takes the other side. 
 
Verifier simulates the verifier.  The verifier guesses randomly and uniformly 
whether to request a graph or a partition.  Because the verifier has no way to 
guess with any advantage whether the committed matrix contains a graph or a 
partition (because the choice is random), there is a 50% chance that he requests an 
option (graph or partition) that the verifier, in the guise of prover, can supply (in 
all cases).  If a partition was requested but a graph had been committed to, then 
the verifier guess randomly and uniformly which color class to request.  Then 
there is a 67% chance that the verifier, in the guise of prover, can supply what was 
requested correctly.  This gives a total chance of 83% that the verifier, in the guise 
of the prover, can supply what is requested.  If what is requested cannot be 
supplied, the verifier backs up the simulation to the state it was in at the start of 
this round and restarts the entire round (verifier simulating the prover). 
 
End. 

 

In an expected 6 passes through each round, the verifier will obtain the information 
without the help of the prover.  Thus the interaction does not help the verifier do 
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something with the prover in expected polynomial time that he could not as well have 
done without the prover in expected polynomial time.    
 

3.2.3 Summary 

The graph coloring problem and equitable coloring problem have positive and negative attributes 
in terms of zero-knowledge proof systems.  A positive feature of these problems is the difficulty 
level.  There exist difficult instances of the problems, and methods have been published on how 
to create difficult instances.  This would provide a strong foundation for a zero-knowledge proof 
system.  The negative aspects of the coloring problems are the soundness probabilities of the 
proof systems.  Compared to the soundness probability of  

 
 that we see in the sub-graph 

isomorphism problem and sub-problems, equitable coloring is able to achieve only a soundness 
probability of  

 
.  This means increasing the number of rounds from 7 to 38 in order to achieve a 

99% probability of catching a cheating prover.  Given the scenarios in which we are looking to 
employ zero-knowledge proof systems, it is not realistic to expect that 38 rounds of one protocol 
will be possible.  In order to utilize graph coloring or equitable coloring, we first need to develop 
a better zero-knowledge proof system. 

 

3.3 OTHER NP-COMPLETE PROBLEMS 

3.3.1 Satisfiability 

The satisfiability problem (SAT) was the first problem to be proven NP-complete (Garey and 
Johnson 1979).  The problem falls under the category of propositional logic, and is stated as 
follows:  Given a set of Boolean variables and a collection of clauses over the set of variables, is 
there a truth assignment for the variables such that every clause in the collection is satisfied? 

 
3.3.1.1 Algorithms 

Much work has been done on developing algorithms to quickly and efficiently solve 
instances of the SAT problem.  The algorithms fall into two distinct categories:  complete 
algorithms and incomplete algorithms.  Incomplete algorithms are stochastic local search based, 
and are often faster, however fail to prove when an instance of SAT is unsatisfiable.  Some well-
known incomplete algorithms are WalkSAT and GSAT.  Complete algorithms are systematic 
search algorithms and usually run slower, but are able to determine when an instance of SAT is 
unsatisfiable.  Some complete algorithms that are used often are DPLL, SATO, and GRASP. 

One of the first algorithms published was the Davis-Putnam-Logemann-Loveland 
(DPLL) algorithm.  The algorithm is still favored today, and many newer algorithms such as 
GRASP (Marques-Silva and Sakallah 1999), SATO (Zhang 1997), and BerkMin (Goldberg and 
Novikov 2002) were created with the same basic idea but with some modifications and 
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improvements.  The main ideas of the systematic search algorithms are backtracking and pruning 
the search space.  

The incomplete algorithms available are also quite efficient in satisfiable instances.   
When comparing the popular algorithms WalkSAT and GSAT, it appears that neither algorithm 
is able to outperform the other consistently (Hoos and Stutzle 2000).  A new variant of 
WalkSAT, gNovelty+, has been developed recently for the annual SAT competition, and appears 
to perform well in the random SAT area (Jia 2007). 

A valuable resource for determining runtime performance of the most up-to-date SAT 
solvers is the annual International SAT Competition4.  Considering the results of the 2008 SAT 
Competition, the solvers were given 100 instances of SAT, some of which were unsatisfiable (so 
only complete algorithms competed). The solvers were allowed 900 seconds (15 minutes) to 
solve each instance (or determine the instance unsatisfiable) before timing out.  The instances 
consisted of anywhere from 286 to 11,483,525 variables and from 1742 to 32,697,150 clauses.  
The instances were taken from several benchmark suites, as well as instances from past SAT 
Competitions (which includes random instances).  The first place winner, MiniSat 2.1, was able 
to solve 81 out of the 100 instances correctly, and the top four winners all solved more than 75 
out of the 100 instances correctly. 

 
3.3.1.2 Existing Zero-Knowledge Proofs 

There seems to be less work done on the SAT problem with regard to zero-knowledge proof 
systems than for some other NP-complete problems like graph 3-colorability or sub-graph 
isomorphism.  A zero-knowledge proof system for the SAT problem, ZKP9, which is illustrated 
in Figure 16, takes as common input a set   of Boolean variables and a collection   of clauses 
and as private input a set of true/false assignments for the variables in  .   

The prover (P) constructs the circuit of truth tables that corresponds to the instance of the 
problem.  P then randomly permutes the rows of each truth table, and randomly complements the 
columns of the tables, except for the last column of the last table.  P then sends a commitment to 
the permuted and complemented set of tables to the verifier (V).  V chooses a random bit   and 
sends   to P.  If V sends     to P, then P sends the decommitment information for all of the 
truth tables to V.  P also notifies V as to which columns were complemented.  V then checks that 
the truth tables were constructed correctly.  If V sends     to P, then P sends to V the 
decommitment information for only the rows that correspond to a satisfying truth assignment 
before complementing took place.  V then checks that these rows lead to a final output of true 
(and hence explains why the last column of the final truth table cannot be complemented) 
(Brassard, Chaum and Crepeau 1988). 

                                                           
4 Available at:  http://www.satcompetition.org/ 
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Few other zero-knowledge proof systems have been published for the SAT problem.  
Papers have been published on non-interactive zero-knowledge proof systems (Damgard 1992), 
zero-knowledge proof systems with two provers (Dwork, et al. 1992), and an interactive zero-
knowledge proof system that focuses on a more secure commitment method than in the protocol 
presented here (Brassard and Crepeau 1986).  While these other protocols may vary slightly from 
the one illustrated in this report, the extent to which the SAT problem has been studied prevents 
the problem from being a secure base problem in a protocol. 
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3.3.1.3 Discussion of Existing Protocols 

In discussing the amount of information transferred in the protocol, we will consider an instance 
of 3-SAT, as any SAT instance can be transformed to a 3-SAT instance.  In an instance of 3-
SAT, each clause has three variables.  The truth table for each clause will have      rows and 
4 columns, giving a total of 32 entries.  Since each entry is either true or false, we need only 32 

Figure 16: ZKP9 for the satisfiability problem example 

Common Input:  A set   of Boolean variables and a collection   
of  clauses. 

Example Instance: 

    U = { a, b, c } 

    C = { (a ν ¬b) ʌ (¬a ν c) } Private Input:    A set of assignments for   such that every clause 
in   is satisfied. 

 

Prover Verifier 

1. Randomly permutes the rows of the truth tables.   
2. Randomly complements the columns of the 

truth tables except for the last column in the 
final table.  (Shown in green) 

3. Sends a commitment to the scrambled tables to 
the verifier. 

 

 

 

 

 

4. Chooses a random bit  . 
5. Sends   to the prover. 

      

6. Sends the decommitment 
information for all truth table 
entries to the verifier and 
identifies which columns were 
complemented. 

 
 
 

7. Checks that the truth tables were formed 
correctly. 

      

6. Sends the decommitment 
information for the row in each 
truth table that corresponds to 
the satisfying truth assignment. 

 

 

7. Checks that the sequence of rows revealed 
outputs true. 
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bits to send the entries for each clause.  If there are     clauses total, then in step 3 the prover 
needs       bits total to send the truth tables (not including the bits needed for the commitment 
process).  In step 5, the verifier sends 1 bit.  If    , then the prover must send the identifiers 
for each column in each truth table that is complemented.  Since each truth table has 4 columns, 
at most        columns can be complemented.  To send a list of numbers representing the 
columns that are complemented, the prover must transfer                      bits.  If 
   , then the prover must reveal one row from each truth table by sending the appropriate 
decommitment information.   

When considering the maximum number of bits that will be necessary in the zero-
knowledge proof system illustrated (not including what is needed for commitment), the number 
transferred will be: 

                                   (22) 

If the maximum amount of information to be transmitted is 10 kilobits, then we must have: 

                                        (23) 

                  (24) 

Thus the largest instance of 3SAT that could be considered would have at most 145 
clauses.  Considering the efficiency of the SAT competition solvers, the instances that would be 
allowed under this information restriction would not create secure protocols. 

 
3.3.2 Graph Partitioning Problem 

The graph partitioning problem (GPP) is stated as follows:  Given a graph   and positive 
integers   and  , is there a partition of the vertices into   equal-sized classes so that there are at 
most   edges with endpoints in different partition classes?  In general, the GPP can consider 
both weighted and unweighted graphs.  The GPP is an NP-complete problem in both the general 
case (allowing weighted vertices and edges) and in the case restricted to unweighted graphs 
(Garey and Johnson 1979). 

 
3.3.2.1 Algorithms 

There are several algorithms created to solve the GPP.  One of the most well-known algorithms 
was developed in the 1970‟s and is the Kernighan-Lin (KL) algorithm (Kernighan and Lin 
1970).  The KL algorithm begins with an initial partition, and then improves it by swapping 
vertices between the partition classes.  This will method will clearly find terminate with a local 
minimum.  However, by allowing swaps of multiple vertices at a time, the algorithm is able to 
avoid getting trapped at a local minimum, and so it is able to get closer to obtaining a partition 
that will achieve global minimum.   
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Another useful algorithm is JOSTLE, a multilevel paradigm algorithm.  JOSTLE and 
other multilevel paradigm algorithms group the graph‟s vertices to make clusters that then 

become vertices in a new graph.  This can be done by contracting edges.  The process is repeated 
until a smaller graph is obtained, and then existing exact GPP algorithms are applied to the new 
graph.  By expanding and refining the partition of the smaller graph, this algorithm works 
backwards to create a partition for the original graph (Banos, et al. 2003).   

There are many other algorithms for solving the GPP, included an isoperimetric 
algorithm (Grady and Schwartz 2006), a lock-gain based algorithm (Kim and Moon 2004), 
greedy algorithms, evolutionary search methods, genetic algorithms (Bui and Moon 1996), 
simulated annealing algorithms (Johnson, Aragon, et al. 1989), and tabu search methods.  As of 
2007, JOSTLE appears to be the best performing algorithm for the GPP (Loureiro and Amaral 
2007). 

Chris Walshaw, of the University of Greenwich, maintains “The Graph Partitioning 

Archive5
”.  The archive consists of a set of benchmark problems, most of which are obtained 

from real-world applications.  Most of the recent publications compare algorithms based on the 
instances provided there.  Considering these instances and more from other sources, it appears 
that there are some difficult cases of the GPP.  Some of these instances as of 2005 were taking 
over 4 hours to compute (Felner 2005). 

 
3.3.2.2 Establishing a Protocol 

At first glance, it appears to be a simple matter to create a zero-knowledge proof system for the 
general version of the GPP (on weighted graphs).  There are three things that must be proven to 
the verifier:  (1) the partition is valid (every vertex is in one and only one partition class), (2) 
every partition class contains exactly   vertices, and (3) there are   edges between the partition 
classes.   

Considering these requirements, we arrive at Protocol A, illustrated in Figure 17.  
Protocol A requires the prover to send a commitment to a permuted adjacency matrix for the 
graph, and then to prove, at the request of the verifier, either that the permutation was performed 
correctly or that there exists a partition of the vertices that obtains the required cut cost. 

                                                           
5 Available at:  http://staffweb.cms.gre.ac.uk/~wc06/partition/ 
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While Protocol A satisfies the completeness and the soundness properties that are 
required for any interactive proof system, it does not satisfy the zero-knowledge property and 
hence is not able to qualify as a zero-knowledge proof system.  In steps 6 and 7, the prover opens 
all entries that correspond to edges between partition classes.  This then tells the verifier how 
many edges there are between the partition classes, and what the different weights are (but not 
which vertices the edges are between).  This is information that the verifier could not possibly 
have determine alone without the help of the prover. 

Common Input:  A graph   (shown), the number of desired 
partitions (   ), and the cost of the desired cut 
(   ). 

 

Private Input: The partition (           ) that achieves the 
desired cut cost (as shown). 

 

Prover Verifier 

1. Creates a permutation   of     .   
2. Creates an adjacency matrix   for     . 
3. Sends a commitment to   to the verifier. 

                    

    
    
 
 

 
 

  
  

  

 

 
  (commitment) 

                         

    
    
 
 

 
 

  
  

  

4. Chooses a random bit  . 
5. Sends   to the prover. 

      

6. Sends   and the decommitment 
information for   to the verifier. 

 

7. Checks that   was formed correctly. 

      

6. Sends the decommitment 
information for the cut edges to 
the verifier. 

7. Sends the decommitment 
information for the non-edges 
between partition classes to the 
verifier. 

 

    

    
    
 
 

 
 

  
  

  

8. Checks that the total sum of edges shown 
is equal to twice the desired cut cost. 

9. Checks that the partition classes have 
equal size and that there is the correct 
number of classes. 

    

    
    
 
 

 
 

  
  

  

 

2 

2 

1 1 

  

  
B D 

C A 

There are 2 nodes in one class 
There are 2 nodes in the other 
class 
The two classes are distinct and 
disjoint 

Figure 17: Protocol A for the graph partitioning problem example 
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A modification to Protocol A is shown in Protocol B.  Using the same protocol but 
requiring that the common input is a graph with all edge weights equal to 1, the prover is not 
revealing any new information.  Because the cost of the cut is common knowledge, the verifier 
already knows how many edges the graph has between partition classes (provided that all edge-
weights are equal to 1).  Protocol B is illustrated in Figure 18.  The modification from weighted 
to unweighted graph now allows the protocol to be a zero-knowledge proof system. 

 
 

 
 

Common Input:  An unweighted graph   (shown), the number of 
desired partitions (   ), and the cost of the 
desired cut (   ). 

 

Private Input: The partition (           ) that achieves the 
desired cut cost (as shown). 

 

Prover Verifier 

1. Creates a permutation   of     .   
2. Creates an adjacency matrix   for     . 
3. Sends a commitment to   to the verifier. 

                    

    
    
 
 

 
 

  
  

  

 

 
 

(commitment) 

                         

    
    
 
 

 
 

  
  

  

4. Chooses a random bit  . 
5. Sends   to the prover. 

      
6. Sends   and the decommitment 

information for   to the verifier. 
 
 

7. Checks that   was formed correctly. 

      

6. Sends the decommitment 
information for the cut edges to 
the verifier. 

7. Sends the decommitment 
information for the non-edges 
between partition classes to the 
verifier. 

 

    

    
    
 
 

 
 

  
  

  

8. Checks that the total sum of edges shown 
is equal to twice the desired cut cost. 

9. Checks that the partition classes have 
equal size and that there is the correct 
number of classes. 
 

    

    
    
 
 

 
 

  
  

  

 

 

1 

1 

1 1 

  

  
B D 

C A 

There are 2 nodes in one class 

There are 2 nodes in the other 
class 
The two classes are distinct and 
disjoint 

Figure 18: Protocol B for the graph partitioning problem example 
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Claim:  Protocol B is a zero-knowledge proof system for the GPP. 

Proof:   

Completeness:  If the prover has a yes-instance   of GPP, then the verifier will accept   
with probability 1. 

Soundness:  If the prover has a no-instance   of GPP, the prover will be caught only 
when the verifier chooses    .  Since   is chosen uniformly and randomly by the 
verifier, the probability that the verifier will reject   is     in each round.  This implies 

that the probability that the verifier does not reject   after   rounds is at most   

 
 
 

    . 

Zero-Knowledge Property:  Suppose the verifier is attempting to extract useful 
information from his conversation with the prover.  Then the verifier can, in the same 
manner, extract the information even without the aid of the prover.  In each round he does 
the following: 

Begin. 

Verifier simulates the prover.  The verifier flips a fair coin and, according to the 
outcome of the coin, commits to either the graph   or an arbitrary  -partition of   
vertices with the correct total cut cost.    is committed to in the same way the 
prover would have done so.  The partition is committed to in just the way the 
prover would have committed to such a partition in  .  Then, acting as prover, he 
presents the commitment information to the verifier.  Now he takes the other side. 

Verifier simulates the verifier.  The verifier guesses randomly and uniformly 
whether to request a graph or a partition.  Because the verifier has no way to 
guess with any advantage whether the committed matrix contains a graph or a 
partition (because the choice is random), there is a 50% chance that he requests an 
option (graph or partition) that the verifier, in the guise of prover, can supply.  If 
not, the verifier backs up the simulation to the state it was in at the start of this 
round and restarts the entire round (verifier simulating the prover). 

End. 

In an expected 2 passes through each round, the verifier will obtain the 
information without the help of the prover.  Thus the interaction does not help the verifier 
do something with the prover in expected polynomial time that he could not as well have 
done without the prover in expected polynomial time.   

 
While we have now proven that Protocol B is a zero-knowledge proof system, we must 

also determine the level of difficulty of the GPP given the amount of information that is revealed 
in the problem.  The modification to the protocol from weighted to unweighted graphs does not 
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affect the NP-completeness of the problem, as discussed previously.  However, many entries of 
the adjacency matrix have been revealed and could possibly make it easy for an eavesdropper to 
solve the problem instance. 

Consider Protocol B, as illustrated in Figure 5-3.  If too many entries must be revealed by 
the prover, then the isomorphism may be discovered easily by the verifier using an effective 
graph isomorphism algorithm.  Let   be a graph with     ,             and     

 

 
  

for    , where   is the partition (as in the set of partition classes).  For the verifier to check 
that the prover‟s answer is valid, the verifier must see the adjacency matrix entries for all edges 

and nonedges between partition classes.  Thus the number of entries that will be revealed to the 
verifier is: 

      
 

 
       

 

 
     

     

 
     (25) 

From this, we can see that the minimum possible number of entries that need to be 
revealed is     , as is the case in the example above when    , but that the maximum 
possible number of entries can be as high as            , in the case where    .  It is 
important to note that the number of entries revealed is entirely dependent on   when the graph 
  is fixed, and also that the problem does not appear to increase in difficulty when   is 
increased. 

In determining how useful Protocol B is, we must consider the number of bits to be 
transferred in each round.  Since the graphs we are considering in this example are simple, 
undirected graphs, the adjacency matrices will be symmetric with zeros along the diagonal and 
with all entries either 0 or 1.  Thus the prover only needs to transmit   

 
  entries of   to the 

verifier.  Hence step 3 requires the transmission of   
 
  committed entries, each of which is one 

bit.  In step 5, the verifier sends one bit.  If    , the prover must send the isomorphism  .  We 
can send this in list form, and so we will need        bits.  If    , the prover must send the 
decommitment information as specified in the protocol.   

Adding everything up and not including what is needed for commitment, the total number 
of bits sent will be: 

       
 
               (26) 

If the maximum amount of information to be transmitted is 10 kilobits, then we must have: 

      
 
                     (27) 

                (28) 

The largest graph to be considered could have at most 134 vertices under the given restriction. 
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3.3.3 Minimum Label Spanning Tree 

The minimum label spanning tree (MLSTP) is stated as follows:  Given a graph   with labeled 
edges, find a minimum spanning tree that uses the fewest number of labels possible.  In other 
words, given a graph          , with vertex set  , edge set  , and edge label set  , find an 
acyclic connected sub-graph     such that      is minimized, where              

                 .  In the example graph in Figure 19,            ,             , 
and        .  There are many spanning trees to consider in the graph shown.  It is clear that to 
include vertex   in the spanning tree, at least one edge with label 2 must be included.  Thus a 
minimum labeling spanning tree is             , where             ,               , 
and       .  This tree is shown in red in the figure.  We should note that in the example 
illustrated it is clear where the spanning tree lies in the original graph, as only one vertex has 
three incident edges with the same label.  In order to make the private input as safe as possible, it 
is important to distribute the edge labels as consistently as possible. 

The minimum label spanning tree problem is an NP-complete problem when we rephrase 
it as a decision problem.  In fact, it has been proven that no polynomial-time approximation 
algorithm with a constant approximation ratio can exist unless P = NP.  The MLSTP has many 
real-world applications, such as communications networks.  These kinds of networks can use 
several different types of communications mediums, such as cable, telephone lines, etc.  Solving 
the MLSTP can give a spanning network using as few different mediums as possible (Chang and 
Leu 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1 

1 

2 2 

2 

a 

b c 

d 
2 2 

2 

Figure 19: An example of the minimum label 

spanning tree problem 
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3.3.3.1 Algorithms 

There are several popular algorithms for solving the MLSTP.  The most popular algorithm until 
2005 was MVCA, the maximum vertex covering algorithm (Consoli, The Development and 
Application of Metaheuristics for Problems in Graph Theory: A Computational Study 2008).  
The MVCA was introduced in the paper that first described the MLSTP (Chang and Leu 1997).  
This approximation algorithm produces a solution that is no greater than           times the 
optimal.  It has also been proven that for any graph with label frequency bounded by some value 
 , the worst-case bound of MVCA is     

 

 

 
   , the  th harmonic number (Xiong, Golden and 

Wasil, Worst-Case Behavior of the MVCA Heuristic for the Minimum Labeling Spanning Tree 
Problem 2005).   

Another algorithm that appears frequently in the literature is a metaheuristic algorithm 
called the Pilot Method.  The Pilot Method improves upon another heuristic algorithm (such as 
MVCA) using repetition and a look-ahead strategy (Voß and Duin 2003).  While the Pilot 
Method will perform at least as well as the heuristic algorithm that it implements (if not better), it 
is often quite time consuming because of its repetitive nature. 

Other algorithms for the MLSTP include genetic algorithms (Xiong, Golden and Wasil, 
A One-Parameter Genetic Algorithm for the Minimum Labeling Spanning Tree Problem 2005), 
tabu search algorithms, and a more recent hybrid algorithm.  It appears that the best performing 
algorithms are VNS (Variable Neighborhood Search) and GRASP (Greedy Randomized 
Adaptive Search Procedure), which were introduced in 2009 (Consoli, Draby-Downman, et al. 
2009).  There is also a set of benchmark instances that are maintained by Sergio Consoli6.   

 
3.3.3.2 Creating a Zero-Knowledge Proof System 

Consider the interactive proof system that is illustrated in Figure 20.  While the protocol satisfies 
the completeness and soundness properties of an interactive proof system, it does not satisfy the 
zero-knowledge property.  In the prover‟s final step, the edges corresponding to the spanning tree 

are revealed.  If       , then the verifier learns how many edges have the same labels.  While 
the verifier does not know which group of edges corresponds to which label, the prover is still 
transmitting information that the verifier could not have discovered using a simulator. 

The next logical question to consider is whether we can restrict the spanning tree so that 
       in order to satisfy the zero-knowledge property.  Since all trees have     edges, the 
verifier would then already know how many edges have the same label.  However, the problem 
then becomes too easy to base a secure protocol on.  For example, consider the basic algorithm 
illustrated in Figure 21.  If we use any efficient algorithm for finding a spanning tree 
(MinSpanTree), most of which run in polynomial time, then the problem is easily solvable in an 

                                                           
6 Available at:  http://www.sergioconsoli.com/MLSTP.htm 
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efficient manner.  Thus in order to use the MLSTP, we must first develop a better zero-
knowledge proof system. 

 

 
 

 
 
 
Any zero-knowledge proof system for the MLSTP needs to check the following facts: 
(1)      labels are used on   

                   
             

for        

if    is connected 

return MinSpanTree(  )  

exit            // Exit both loops 

end if 

end for 

 

Figure 21: An algorithm for the minimum label 

spanning tree problem with one label 

Common Input:  A labeled graph   (shown in Figure 6-4), and the number of distinct labels in a min. label 
spanning tree (       in the example). 

 

Private Input:  The min. label spanning tree,   (shown in Figure 4 in red). 
 

Prover Verifier 

1. Creates a permutation   of     .   
2. Chooses a permutation   of the set of labels. 
3. Creates an adjacency matrix   for        . 
4. Sends a commitment to   to the verifier. 

                    

    
    
 
 

 
 

  
  

  

 

 
 
 

(commitment) 

                         

    
    
 
 

 
 

  
  

  

5. Chooses a random bit  . 
6. Sends   to the prover. 

      
7. Sends   and the decommitment 

information for   to the verifier. 
 
 

8. Checks that   was formed correctly. 

      

7. Sends the decommitment 
information for the entries of   
corresponding to edges in  . 

 

    

    
    
 
 

 
 

  
  

  

8. Checks that the entries correspond to a 
spanning tree using      labels. 

 
Figure 20: An interactive proof system for the minimum label spanning tree problem example 
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(2)   is acyclic 
(3)   is connected 
(4)   is spanning 

 
It is possible to check (3) and (4) simultaneously by having the verifier request two 

vertices and requiring the prover to show a path in   between those two vertices.  However this 
will give the verifier information on the spanning tree that could not have been obtained without 
the help of the prover.  The verifier can check (2) by requesting that the prover show that 
       , where   is the number of vertices in  .  Again, we arise at the problem of 
determining how the prover can reveal the number of edges in   without giving away any of the 
structure of the tree.  Lastly, the problem of proving (1) is going to be the most difficult in terms 
of preserving the zero-knowledge property in the proof system.  It will require a more creative 
approach to construct a zero-knowledge proof system for the MLSTP than what we have 
considered so far. 

 
3.3.3.3 Coping with Weighted Graphs 

So far our work on zero-knowledge proof systems has dealt with only unweighted graphs, i.e. all 
edge weights are either 0 or 1, corresponding to nonedges and edges respectively.  When edge 
weights are introduced into an interactive proof system, usually the completeness and soundness 
properties are preserved but the zero-knowledge property is not.  When the prover reveals 
information in the permuted and committed adjacency matrix for the graph, the prover is not 
only revealing that edges exist but also the weights of the edges.  This allows the verifier to 
discover information about the graph that could not possibly have been computed using a 
simulator.  So far, it does not appear that this issue has been addressed in the literature. 

When we consider the decision version of the minimum label spanning tree problem, also 
known as the bounded label spanning tree problem (BLSTP), the original proof of the NP-
completeness of the problem is based on proving that if MLSTP is easily solved then the 
minimum set covering problem is easily solved (Chang and Leu 1997).  Unfortunately, as there 
is no clear way to convert an arbitrary instance of MLSTP into another known NP-complete 
problem, we are left with no obvious way of transforming an existing zero-knowledge proof 
system for the class NP to this problem, as is suggested in the proofs that all languages in NP 
have zero-knowledge protocols (Goldreich, Micali and Wigderson 1991). 

There are several possible options for creating zero-knowledge proof systems for 
weighted graph problems, however none of these options has been especially fruitful.  While 
some of the options have worked in specific cases, no option has worked in every case and there 
still remain problems in which no option is feasible (MLSTP).  The options that have been 
considered already are the following: 
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1. Convert the base problem on weighted graphs to a base problem on unweighted 
graphs by changing all edge weights that are greater than one to edge weight one. 

In some problems, such as the minimum label spanning tree problem, this option 
can make the base problem much easier.  This can enable a cheater to break the 
problem instance and impersonate a trusted party.  However, this solution seems 
feasible for the graph partitioning problem.   

2. Convert the problem instances so that the solutions use the same number of edges of 
each edge weight involved and include this number in the common input. 

This is not always a realistic possibility.  It can become quite cumbersome to 
create problem instances in which the solutions are uniform, and it can also make the 
problem instances much easier for cheaters to break and solve.  However, this option 
appears to work well for the graph coloring problem (considering vertex weights 
instead of edge weights). 

3. Use the reduction from an existing NP-complete problem to the base problem (as is 
done in a standard proof of NP-completeness) to transform the problem into one that 
is usable in an existing zero-knowledge proof system. 

Proofs of NP-completeness show two facts.  The first is that the base problem is 
in the class NP.  The second fact is that the problem is harder than an existing NP-
complete problem, i.e. an instance of the existing NP-complete problem is true if and 
only if a corresponding instance of the base problem is true.  This is most commonly 
accomplished by transforming an instance of the existing problem into some 
corresponding instance of the base problem.  This leaves us with no way to 
transform any instance of the base problem into an instance of the existing problem, 
and hence no way to apply a zero-knowledge proof system for the existing problem 
to the base problem.  However, this approach works well for converting the traveling 
salesman problem to a sub-graph isomorphism problem (by adding   vertices along 
edge   with          and then searching the new unweighted graph for a cycle 
of length equal to the length of a minimum TSP tour in the original weighted graph). 

Weighted graphs appear to greatly complicate the zero-knowledge proof systems.  The 
three options discussed above clearly are not perfect solutions, but they do seem to work for 
some particular problems.  It is worth considering whether the added complication is worth the 
trouble.  Either the base problem can be converted to an unweighted graph by adding vertices 
and edges (which increases the number of bits sent between prover and verifier) or the prover is 
required to send a commitment to an adjacency matrix that is no longer filled with only 0‟s and 
1‟s (which again increases the number of bits sent).  In the first case, the amount of information 
that needs to be transferred increases, while the problem instances themselves may not be more 
difficult than instances of a similar base problem on unweighted graphs.  In the second case, it 
becomes much more difficult to satisfy the zero-knowledge property. 
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4. RESULTS AND DISCUSSION 

 

While it may be one of the best known NP-complete problems, the satisfiability problem is not a 
practical base problem for a zero-knowledge proof system.  First, the amount of information that 
is required to be computed and transferred in the existing protocol is very large compared the 
protocols that exist for the other problems discussed in this report.  Second, many efficient 
solvers exist for the problem.  For example, the solvers tested during the SAT competition are 
able to solve instances with millions of variables and millions of clauses.  This fact coupled with 
the data transfer in the zero-knowledge proof system discussed makes the problem very 
impractical for implementation.  Lastly, as of yet there does not exist a method for generating 
hard instances of the satisfiability problem.  Many instances that are known to be difficult were 
found by a guess-and-check process, which will not be practical for use in a secure protocol.  We 
must be able to create hard instances of whatever base problem is selected. 

Graph coloring and equitable coloring are one step closer to being practical base 
problems for zero-knowledge proof systems than the satisfiability problem.  While the 
probability of catching a cheating prover may not be as high in the protocol for equitable 3-
coloring as in some of the protocols using other base problems, we are at least aware of methods 
for creating difficult problem instances.  A difficult problem instance is one in which the existing 
algorithms are unable to solve optimally in a reasonable amount of time.  The set of graphs 
introduced by The Second DIMACS Implementation Challenge (1992-1993) seems to contain 
some difficult classes of graph coloring instances.  These difficult instances would enable the 
graph coloring problem to be a good base problem for a zero-knowledge proof system, but a 
stronger zero-knowledge proof system in which a cheater is more easily discovered must be 
developed. 

Out of the problem classes discussed in this report, the sub-graph isomorphism class 
appears to be the most promising.  In particular, the longest path problem and the sub-graph 
isomorphism problem itself seem to have the most potential.  Currently there do not exist any 
extremely efficient solvers for the longest path problem, and all sub-graph isomorphism class 
problems have a zero-knowledge proof system with a probability of catching a cheating prover, 
taking only 7 rounds to achieve a confidence level of 99%.  The protocols are also efficient 
compared to the existing protocols for other classes of base problems in terms of the amount of 
data transferred between prover and verifier.  Overall, the problems in the sub-graph 
isomorphism class, with the exception of graph isomorphism, seem to have the most potential.  

While the sub-graph isomorphism class is emerging as a useful set of base problems for 
zero-knowledge proof systems, there is still work to be done.  More testing needs to be done on 
the efficiency of the algorithms for the sub-graph isomorphism problem and its subproblems in 
order to determine the lower bound on the size of the problem instance for a difficult problem.  
We must also determine which graph structures are capable of producing the hardest instances in 
the sub-graph isomorphism class.  Is the average instance of the longest path problem harder than 
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the average case of the minimum bandwidth problem?  Which of the problems can we develop 
difficult instances for in a consistent manner? 

Last, but not least, we must consider the latest problems in this area.  For example, the 
minimum label spanning tree, introduced in 1997, could be a promising base problem for a zero-
knowledge proof system.  However, to be able to utilize this difficult problem, we must first 
create a valid interactive proof system for the problem that satisfies the zero-knowledge property.  
The creation of a zero-knowledge proof system involving weighted graphs will allow us to 
consider many more graph theoretic problems that are currently unusable as base problems. 
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5. CONCLUSIONS AND FUTURE WORK 

 

Zero-knowledge proof systems have many characteristics that are desirable for determining 
trustworthy parties in an airborne networking environment.  One approach is to base zero-
knowledge proof systems on the instances and solutions of NP-complete problem.  This report 
has investigated this approach with a focus on the graph theory problems within the NP-complete 
and NP-hard classes.   

 Future research in this area must focus application driven requirements associated with 
airborne mobile adhoc networks.  Protocols used for authentication of user identity, and establishment 
of mutual trust, cannot constrain either the movement of information or the movement of systems 
anywhere in the battlespace. Successful implementation of ZKP-based authentication protocols will 
require that there be a positive impact on both network connectivity and network-user operations.  The 
efficiency and effectiveness of I/A protocols therefore need to be considered against realistic scenarios.  
MANETs by definition are not static, their configuration change over time; network connections and 
information routing paths change when nodes are added to, or removed from, the network as new user 
groups form or nodes are compromised.  Mitigating factors such as time-sensitivity of the I/A process, 
communication channel bandwidth and quality, network dynamics and data flows, user security access 
requirements, and so on, all need to be accounted for when gauging protocol viability.    
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7. LIST OF SYMBOLS AND ABBREVIATIONS 

  
Symbols 

  and 
  or 
  is isomorphic to 
    the integers 1 through   
¬  for Boolean variable  , the complement of   
    for sets   and  ,           
  
     the set of edges of graph   
        a graph with vertex set   and edge set    
  the complement of graph   
    the number of vertices in graph   
    the number of edges in graph   
       the Erdős-Rényi model random graph on   vertices with edge probability   
     the sub-graph of   induced by the set        
   a path with   edges 
  

  a path    with additional edges added between every pair of vertices     such 
that the distance between   and   in the path    is at most   

     the set of vertices of graph   
  
     the maximum degree of the graph   
   for permutations   and  , equivalent to     
     the chromatic number of the graph   
 
Abbreviations 

3-SAT satisfiability problem consisting of clauses with three variables 
AN airborne network 
APX the class of optimization problems with polynomial-time approximation 

algorithms with approximation ratio bounded by a constant 
BLSTP bounded label spanning tree problem 
DIMACS center for Discrete Mathematics and Theoretical Computer Science 
DLS dynamic local search 
E3C equitable 3-coloring problem 
G3C graph 3-coloring problem 
GA genetic algorithm 
GCP graph clustering problem 
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GIP graph isomorphism problem 
GNI graph non-isomorphism problem 
GPP graph partitioning problem 
GRASP greedy randomized adaptive search procedure 
HCP Hamiltonian cycle problem 
ISP independent set problem 
KIS the  -independent set problem 
LPP longest path problem 
MANET mobile ad hoc network 
MBP minimum bandwidth problem 
MCP maximum clique problem 
MLSTP minimum label spanning tree problem 
MVCA maximum vertex covering algorithm of Chang and Leu (1997) 
NP the class of nondeterministic polynomial problems 
P the class of deterministic polynomial problems 
QRA quadratic residuosity assumption 
RLS reactive local search 
SA simulated annealing 
SAT satisfiability problem 
SGI sub-graph isomorphism problem 
TSP traveling salesman problem 
VNS variable neighborhood search 
VSS variable space search 
ZKP zero-knowledge proof system 
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NP-COMPLETE GRAPH PROBLEMS 
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GRAPH ISOMORPHISM 

 
6. G. Brassard, C. Crepeau.  “Non-Transitive Transfer of Confidence:  A Perfect Zero-

Knowledge Interactive Protocol for SAT and Beyond.”  Proc. of the 27
th

 Annual 

Symp. on Foundations of Computer Science:  188-195, 1986. 
 
Notes:  Introduces an idea for a ZKP for graph isomorphism based on the assumption 
that arbitrarily hard instances of the problem exist.  States that the protocol will be 
formalized in a later paper. 
 

7. D. Conte, P. Foggia, C. Sansone, and M. Vento.  “Thirty Years of Graph Matching in 

Pattern Recognition.  International Journal of Pattern Recognition and Artificial 

Intelligence (World Scientific Publishing Company) 18, no. 3(2004):  265-298. 
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Notes:  Discusses many of the graph and sub-graph isomorphism algorithms that 
existed at the time of publication.  Also shows many applications of the problems and 
algorithms. 
 

8. L. P. Cordella, P. Foggia, C. Sansone, M. Vento.  “A (Sub)Graph Isomorphism 

Algorithm for Matching Large Graphs.”  IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 26(10):  1367-1372. Oct. 2004. 
 
Notes:  Introduces and describes the VF2 algorithm.  Compares VF2 with Nauty and 
Ullman‟s algorithm on the graph isomorphism problem with input graphs that are 
randomly connected, 2D mesh, or bounded valence graphs. 

 
9. P. Foggia, C. Sansone, M. Vento.  “A Performance Comparison of Five Algorithms 

for Graph Isomorphism.”  Proc. of the 3
rd

 IAPR TC-15 Workshop on Graph Based 

Representations in Pattern Recognition:  188-199, 2001. 
 
Notes:  Compares VF2, Nauty, and Ullman‟s algorithm on benchmark sets of graphs 
(tested on randomly connected, 2D mesh, and bounded valence graphs).  Contains 
many graphs and plots of the results.   
 

10. P. Foggia.  The VFLib Graph Matching Library, version 2.0.  March 2001.  Available 
at http://amalfi.dis.unina.it/graph/db/vlib.html (accessed May 24, 2010). 

 
Notes:  The home of the VF2 algorithm.  The C++ code is publicly available at this 
site. 

 
11. S. Fortin.  “The Graph Isomorphism Problem.”  Technical Report TR 96-20:  

University of Alberta, July 1996. 
 
Notes:  A description of the graph isomorphism problem with a description of some 
invariants under isomorphism that can be used to reduce the search space.  Also 
discusses Nauty and tests the program with a few specific types of graphs. 
 

12. O. Goldreich.  Foundations of Cryptography:  Fragments of a Book.  Weizmann 
Institute of Science:  1995. 

 
Notes:  Presents a perfect zero-knowledge proof for the graph isomorphism problem. 
Goes through a formal and thorough proof that the protocol presented is a zero-
knowledge proof system using simulators. 
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13. O. Goldreich, S. Micali, A. Wigderson.  “Proofs that Yield Nothing but Their 

Validity or All Languages in NP Have Zero-Knowledge Proof Systems.”  Journal of 

the ACM 38(1):  691-729, 1991. 
 

Notes:  Presents a perfect zero-knowledge proof system for the graph isomorphism 
problem.  Contains a thorough discussion and proof that the protocol is a perfect zero-
knowledge proof system.  Discusses a modification to the protocol to enable parallel 
execution instead of sequential. 
 

14. D. Grigoriev, V. Shpilrain.  “Zero-Knowledge Authentication Schemes from Actions 
on Graphs, Groups, or Rings.”  CoRR:  2008. 
 
Notes:  Discusses the problem as a promise problem, i.e. find a particular 
isomorphism between the two graphs (not just any isomorphism).  Outlines the 
protocol and proves that successful forgery in the protocol is equivalent to solving the 
instance of the graph isomorphism problem. 
 

15. C. Hernandez-Goya, P. Caballero-Gil.  “A New Role of Graph Theory:  The Design 

of Probably Secure Cryptoprotocols.”  Information Systems Security:  34-43, 
March/April 2004. 

 
Notes:  Mentions methods for creating difficult instances of the graph isomorphism 
problem.  Discusses several (non-zero-knowledge) protocols for the graph 
isomorphism problem, and then improves upon the ideas to create a general zero-
knowledge proof system for any graph problem. 

 
16. B.D. McKay.  “Practical Graph Isomorphism.”  Congressus Numerantium 30 (1981):  

45-87. 
 

Notes:  Introduces and describes the mathematical methods behind the Nauty 
algorithm. 

 
17. R. Mun (Advisor:  R. Williams).  “15-453 FLAC:  Graph Isomorphism.” 

 
Notes:  Presents some background and explanation of the graph isomorphism 
problem.  Discusses some possible approaches to finding an efficient algorithm for 
the problem and mentions both the positive and negative sides to each approach. 
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18. J. Pieprzyk, T. Hardjono, J. Seberry.  “Zero Knowledge Proof Systems.”  From 

Fundamentals of Computer Security.  Springer-Verlag:  409-431, 2003. 
 
Notes:  Defines and introduces zero-knowledge proof systems.  Presents an 
interactive proof system for the graph isomorphism problem and proves that it is a 
zero-knowledge proof system in a thorough manner. 
 

19. J. Rothe.  Complexity Theory and Cryptology.  Springer-Verlag:  386-393, 2005. 
 
Notes:  Discusses and outlines a zero-knowledge proof system for the graph 
isomorphism problem, along with a discussion of the protocol.  Discusses various 
possible commitment schemes to use in the protocol. 
 

20. G. I. Simari.  “A Primer on Zero Knowledge Protocols.”  Universidad Nacional del 

Sur:  June 27, 2002. 
 
Notes:  Introduces and defines the properties of zero-knowledge proof systems.  
Outlines a zero knowledge protocol for the problem through a specific example.  
Discusses why the protocol is zero-knowledge and demonstrates a forgery algorithm. 
 

GRAPH NON-ISOMORPHISM 

 
21. O. Goldreich.  Foundations of Cryptography:  Fragments of a Book.  Weizmann 

Institute of Science:  1995. 
 
Notes:  Discusses an interactive proof system for GNI, and then goes on discuss how 
to modify the protocol to achieve a zero-knowledge proof system in a later section. 
 

22. O. Goldreich, S. Micali, A. Wigderson.  “Proofs that Yield Nothing but Their 
Validity or All Languages in NP Have Zero-Knowledge Proof Systems.”  Journal of 

the ACM 38(1):  691-729, 1991. 
 
Notes:  Presents an interactive proof system for graph non-isomorphism and then 
extends this proof system to a perfect zero-knowledge proof system for the problem.  
Mentions that the protocol discussed can also be run in parallel instead of 
sequentially. 
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23. J. Pieprzyk, T. Hardjono, J. Seberry.  “Zero Knowledge Proof Systems.”  From 

Fundamentals of Computer Security.  Springer-Verlag:  409-431, 2003. 
 
Notes:  Presents an interactive proof system for the graph non-isomorphism problem.  
States that the protocol is zero-knowledge (with reference to a proof).  Discusses the 
relationship between this protocol and the one for the graph isomorphism problem. 

 

SUB-GRAPH ISOMORPHISM 

 
24. N. Alon, Raphael Yuster, and Uri Zwick. "Color-Coding." Journal of the ACM 42, 

no. 4 (July 1995): 844-856. 
 

Notes:  Introduces the color-coding method of solving the sub-graph isomorphism 
problem.  This algorithm solves certain subcases of the SGI in polynomial time using 
the concept of treewidth and tree decompositions. 

 
25. L. P. Cordella, P. Foggia, C. Sansone, M. Vento.  “A (Sub)Graph Isomorphism 

Algorithm for Matching Large Graphs.”  IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 26(10):  1367-1372. Oct. 2004. 
 
Notes:  Introduces and describes the VF2 algorithm.  Compares VF2 to Ullman‟s 

algorithm, and concludes that VF2 performs better, especially when sub-graph has 
more than 20 nodes.  Tests the algorithm on graphs derived from large line drawings 
of publicly available images. 

 
26. F. Dorn.  “Planar Sub-graph Isomorphism Revisited.”  September 2009.  Available on 

the arXiv:  http://arxiv.org/abs/0909.4692v1  (accessed May 2010). 
 

Notes:  Theoretical results on planar sub-graph isomorphism. 
 

27. P. Foggia.  The VFLib Graph Matching Library, version 2.0.  March 2001.  Available 
at http://amalfi.dis.unina.it/graph/db/vlib.html (accessed May 24, 2010). 

 
Notes:  The home of the VF2 algorithm.  The C++ code is publicly available at this 
site. 
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28. F.V. Fomin, D. Lokshtanov, V. Raman, B.V.R. Rao, and S. Saurabh.  “Faster 

Algorithms for Finding and Counting Sub-graphs.”  December 2009.  Available on 

the arXiv:  http://arxiv/org/abs/0912.2371v1 (accessed May 2010). 
 

Notes:  Theoretical results on the sub-graph isomorphism problem using the notion of 
treewidth and randomized algorithms. 

 
29. D. Grigoriev, V. Shpilrain.  “Zero-Knowledge Authentication Schemes from Actions 

on Graphs, Groups, or Rings.”  CoRR:  2008. 
 
Notes:  Describes the usual sub-graph isomorphism protocol, but commits to the 
graph by embedding it in a larger graph.  Contains a few short notes about the 
protocol. 
 

30. P. LeBodic, H. Locteau, S. Adam, P. Heroux, Y. Lecourtier, and A. Knippel.  
“Symbol Detection Using Region Adjacency Graphs and Integer Linear 

Programming.”  10
th

 International Conference on Documnt Analysis and Recognition, 
2009:  1320-1324. 

 
Notes:  Formulates the sub-graph isomorphism problem as an integer linear program.  
Contains experimental results that are specific to architectural applications. 

 
31. V. Lipets, N. Vanetik, E. Gudes.  “Subsea:  an efficient heuristic algorithm for sub-

graph isomorphism.”  Data Mining and Knowledge Discovery:  2009. 
 
Notes:  Introduces a new algorithm that finds all sub-graphs in the second graph that 
are isomorphic to the first (instead of just one like VF2 or Ullman‟s).  Performs well 
when all sub-graphs are desired, but when just one is needed, it is often outperformed. 
 

32. H. Shang, Y. Zhang, X. Lin, J. X. Yu.  “Taming Verification Hardness:  An Efficient 

Algorithm for Testing Sub-graph Isomorphism.”  Proc. of the VLDB Endowment, 
1(1):  364-374, Aug. 2008. 
 
Notes:  Introduces and describes the QuickSI algorithm for testing sub-graph 
isomorphism.  Compares and evaluates QuickSI against the Ullman algorithm.  Both 
algorithms use branch and bound, but QuickSI encodes an ordering while Ullman is a 
random ordering. 
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33. C. Solnon.  “AllDifferent-Based Filtering for Sub-graph Isomorphism.”  Artificial 

Intelligence, 2010:  doe:  10.1016/j.artint.2010.05.002. 
 

Notes:  Introduces a new filtering algorithm for the sub-graph isomorphism and 
shows experimental results comparing the new algorithm with VF2 and other existing 
algorithms. 

 
34. A. Takura.  “Automated Generation of Communications Software from Service 

Specifications Described by State Transition Rules.”  Proc. of the Thirtieth Hawaii 

International Conference:  472-480, Jan. 1994 
 
Notes:  Develops a procedure for automated generation of software for telephone 
service based on the sub-graph isomorphism problem.  The graphs that are developed 
for this purpose can find sub-graph isomorphisms at a “practical speed”. 
 

35. J.R. Ullman.  “An Algorithm for Sub-graph Isomorphism.”  J. Assoc. for Computing 

Machinery, 23: 31-42, 1976. 
 

Notes:  Introduces Ullman‟s algorithm for the graph isomorphism and sub-graph 
isomorphism problem.  Tests the algorithm on several different types of graphs. 

 
36. S. Zampelli, Y. Deville, and C. Solnon.  “Solving Sub-graph Isomorphism Problems 

with Constraint Programming.”  Constraints, 2010 (to appear). 
 

Notes:  Introduces a new filtering algorithm and tests the new algorithm against other 
algorithms such as VF2. 
 

HAMILTONICITY 

 
37. M. Blum.  “How to Prove a Theorem So No One Else Can Claim It.”  Proceedings of 

the International Congress of Mathematicians:  1444-1451, 1986. 
 

Notes:  Outlines and discusses a zero-knowledge proof system for the Hamiltonian 
cycle problem.  Presents the protocol using locked boxes instead of 
encryption/commitments.  Proves that the properties of a zero-knowledge proof 
system are satisfied in the given protocol. 
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38. P. Caballero-Gil, C. Hernandez-Goya.  “Zero-Knowledge Hierarchical Authentication 
in MANETs.”  IECE Trans. Inf. And Syst., Vol. E89-D, No. 3:  1288-1289, March 
2006. 
 
Notes:  Uses a zero-knowledge proof system for the Hamiltonian cycle problem to 
implement a hierarchical scheme.  Notes that zero-knowledge proof system involved 
need not be based on the Hamiltonian cycle problem and that any other hard graph 
problem would suffice. 
 

39. B. Chazelle.  “The security of knowing nothing.”  Nature, vol. 446:  992-993, April 
2007. 
 
Notes:  Begins with a basic introduction to zero-knowledge proof systems and 
discusses a real-world application of the Hamiltonian cycle problem.  Discusses how 
to hide the private information instead of revealing all. 
 

40. I. Damgård.  “Non-Interactive Circuit Based Proofs and Non-Interactive Perfect Zero-
Knowledge with Preprocessing.”  Proc. of Eurocrypt:  341-355, 1992. 
 
Notes:  Presents an interactive argument with preprocessing from a paper in the 
references.  The author goes on to critique this model and present a more efficient 
preprocessing and proof phase based on an assumption that collision free hash 
functions exist. 

 
41. D. Grigoriev, V. Shpilrain.  “Zero-Knowledge Authentication Schemes from Actions 

on Graphs, Groups, or Rings.”  CoRR:  2008. 
 
Notes:  Observes that this problem is a special case of the sub-graph isomorphism 
problem, which is then discussed (see sub-graph isomorphism). 
 

42. G. Gutin, D. Karapetyan.  “16:  Greedy Like Algorithms for the Traveling Salesman 

and Multidimensional Assignment Problems.”  Advances in Greedy Algorithms.  W. 
Bednorz (Ed.), I-Tech, Vienna, Austria:  291-304, Nov. 2008. 
 
Notes:  Introduces the asymmetric TSP and the symmetric TSP problems along with 
greedy algorithms for both.  Introduces the greedy algorithm, NN algorithm, and 
Patch algorithm, and tests them on some instances from TSPLIB.   
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43. R. Hassin, A. Keinan.  “Greedy Heuristics with Regret, with Application to the 
Cheapest Insertion Algorithm for the TSP.”  Operations Research Letters, 36:  243-
246, 2008. 
 
Notes:  Introduces a greedy algorithm with partial regret (reconsider past decisions).  
Compares the standard algorithm with this algorithm allowing regret, and tests the 
algorithm on the TSPLIB instances, showing a reduction in average error.   
 

44. K. Helsgaun.  “An Effective Implementation of the Lin-Kernighan Traveling 
Salesman Hueristic.”  European Journal of Operational Research, 126 (2000):  106-
130. 

 
Notes:  Introduces an implementation of the symmetric TSP and finds optimal 
solutions of real-world instances. 

 
45. D.S. Johnson, L.A. McGeoch.  “Chapter 1:  Experimental Analysis of Heuristics for 

the STSP.”  The Traveling Salesman Problem and its Variations.  Gutin, Punnen 
(Eds.), Kluwer Academic Publishers:  369-443, 2002.   
 
Notes:  Discusses and compares the relevant algorithms (from 2002).  Testing is done 
on several random instances as well as instances from TSPLIB.   Only instances with 
more than 1000 nodes were considered, as ones with fewer than 1000 nodes are 
generally considered too easy.   
 

46. D. Kaur, M.M. Murugappan.  “Performance Enhancement in Solving Traveling 

Salesman Problem using Hybrid Genetic Algorithm.”  Proc. of the IEEE NAFIPS 

Conference:  May, 2008. 
 
Notes:  Introduces a hybrid genetic algorithm for TSP and compares it to NN (nearest 
neighbor) and pure GA (genetic algorithm).   
 

47. D. Lapidot, A. Shamir.  “A one-round, two-prover, zero-knowledge protocol for NP.”  

Combinatorica, 15(2):  203-214, June, 1995. 
 
Notes:  Quickly describes a basic zero-knowledge proof system for the Hamiltonian 
cycle problem with one prover.  Extends this basic protocol to a zero-knowledge 
proof system for the Hamiltonian cycle problem with two provers and one verifier.  
Thoroughly proves that the properties of a zero-knowledge proof system are satisfied.  
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48. D. Lin, X. Wu, D. Wang.  “Exact Heuristic Algorithm for Traveling Salesman 

Problem.”  Proc. of 9
th

 International Conference for Young Computer Scientists:  9-
13, Nov. 2008.   
 
Notes:  Introduces a new heuristic algorithm (BACHA) based on branch-and-cut for 
the TSP.  Tests BACHA against the normal GA on some benchmark instances from 
TSPLIB95.  Also compares it with a version of the Lin-Kernighan algorithm. 
 

49. Y. Marinakis, A. Migdalas, P.M. Pardalos.  “A Hybrid Genetic – GRASP Algorithm 
Using Lagrangean Relaxation for the Traveling Salesman Problem.”  Journal of 

Combinatorial Optimization, 10:  311-326, 2005. 
 
Notes:  Discusses the different types of algorithms available for TSP as of 2005.  
Contains a list ranking all of the best known algorithms by average quality.  
Introduces a new algorithm that is tested on instances from TSPLIB and compares it 
with existing algorithms. 
 

50. M. Nguyen, S. Vadhan.  “Zero Knowledge with Efficient Provers.”  Proc. of the 38
th

 

Annual Symposium on Theory of Computing:  287-295, 2006. 
 
Notes:  Discusses the idea of 1-out-of-2 binding commitments mostly for the “entropy 

approximation” problem, but with references to graph isomorphism, 3-colorability, 
and hamiltonicity.  Outlines the usual Hamiltonian cycle zero-knowledge proof 
system. 
 

51. J.W. Pepper, B.L. Golden, E.A. Wasil.  “Solving the Traveling Salesman Problem 

with Annealing-Based Heuristics:  A Computational Study.”  IEEE Transactions on 

Systems, Man, and Cybernetics – Part A:  Systems and Humans, 32(1):  72-77, Jan. 
2002. 
 
Notes:  Compares several annealing-based heuristics for TSP by testing on instances 
from TSPLIB.  Algorithms compared:  SA (simulated annealing), TA (threshold 
accepting), RRT (record-to-record travel), and DA (demon algorithm).  
 

52. G. Reinelt.  “TSPLIB – A Traveling Salesman Problem Library.”  ORSA Journal on 

Computing, 3(4):  376-384, 1991. 
 
Notes:  Discusses the contents of the set of benchmark instances for the traveling 
salesman problem:  TSPLIB.   
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53. S.S. Skiena.  The Algorithm Design Manual.  Springer-Verlag:  London, 2008. 
 
Notes:  Introduces both the Hamiltonian cycle problem and the traveling salesman 
problem with general background information as well as a short discussion on 
efficient algorithms.   
 

54. F. Zhao, J. Dong, S. Li, J. Sun.  “An Improved Ant Colony Optimization Algorithm 

with Embedded Genetic Algorithm for the Traveling Salesman Problem.”  Proc. of 

the 7
th

 World Congress on Intelligent Control and Automation:  7902-7906, June 
2008. 
 
Notes:  Introduces a new ACO (ant colony optimization) algorithm and tests it against 
existing ACO algorithms.  Testing is done on benchmark instances from TSPLIB.   
 

LONGEST PATH PROBLEM 

 
55. A. Björklund, T. Husfeldt.  “Finding a Path of Superlogarithmic Length.”  SIAM 

Journal of Computing, 32(6):  1395-1402, 2003. 
 

Notes:  Introduces a polynomial-time algorithm to find a long (defined in paper) path 
in a graph.  Does not contain experimental results for the algorithm, but contains a 
more theoretical analysis of the problem and algorithm. 

 
56. D. Karger, R. Motwani, and G.D.S. Ramkumar.  “On Approximating the Longest 

Path in a Graph.”  Algorithmica (Springer New York) 18, no. 1 (May 1997):  82-98. 
 

Notes:  Considers several different (inexact) longest path algorithms and compares 
their performance.  Also includes hardness results of the problem. 

 
57. S.N.N. Pandit.  “Some Observations on the Longest Path Problem.”  Operations 

Research, 12(2):  361-364, 1964. 
 

Notes:  Critiques a paper that discusses the traveling salesman problem by Hardgrave 
and Nemhauser where the problem is transformed into the longest path problem.  
Concludes that this transformation is unhelpful, as the longest path problem is also a 
difficult problem. 
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58. V. Vassilevska, R. Williams, S.L.M. Woo.  “Confronting Hardness Using a Hybrid 
Approach.”  Technical Report, Computer Science Department, Carnegie Mellon 

University:  April 2005. 
 

Notes:  Introduces an algorithm that will either find the exact solution in sub-
exponential time or approximate the solution in polynomial time.  Compares this to 
the runtimes of other algorithms for the longest path problem. 

 
59. S. Voß and C. Duin.  “Look Ahead Features in Metaheuristics.”  MIC2003:  The Fifth 

Metaheuristics International Conference, 2003:  79-1 – 79-7. 
 

Notes:  Introduces the Pilot algorithm and shows applications to TSP. 
 
MINIMUM BANDWIDTH PROBLEM 

 
60. M. Cygan, M. Pilipczuk.  “Faster Exact Bandwidth.”  Lecture Notes in Computer 

Science, 5344:  101-109, 2008. 
 

Notes:  Discusses exact algorithms for the minimum bandwidth problem.  Introduces 
a new algorithm that has time-complexity       .  Also includes some background 
information on the problem itself. 

 
61. I.S. Duff.  “Users‟ Guide for the Harwell-Boeing Sparse Matrix Collection (Release 

I).”  Technical Report TR/PA/92/86, Research and Technology Division, Boeing 
Computer Services, Seattle, WA:  Oct. 1992. 

 
Notes:  Describes the Harwell-Boeing Sparse Matrix Collection that is available 
online.  Gives the background for each class of instances along with some detail on 
what type of instance the class contains.   

 
62. A. Lim, B. Rodrigues, F. Xiao.  “Heuristics for Matrix Bandwidth Reduction.”  

European Journal of Operational Research, 174(1):  69-91, 2006. 
 

Notes:  Introduces new heuristic algorithms for the minimum bandwidth problem and 
tests them against the GPS algorithm, GRASP, tabu search, etc., using the Harwell-
Boeing Sparse Matrix Collection. 
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63. V. Vassilevska, R. Williams, S.L.M. Woo.  “Confronting Hardness Using a Hybrid 

Approach.”  Technical Report, Computer Science Department, Carnegie Mellon 
University:  April 2005. 

 
Notes:  Introduces a hybrid algorithm for the minimum bandwidth problem.  Offers 
an algorithm that either solves the problem exactly or approximates it in polynomial 
time.  Discusses the approximation ratio achieved if an exact solution cannot be 
found. 
 

64. G.J. Woeginger.  “Exact Algorithms for NP-Hard Problems:  A Survey.”  Lecture 

Notes in Computer Science, 2570:  185-207, 2003. 
 

Notes:  Outlines and discusses the algorithm of Feige and Kilian with time-
complexity         that is based on the technique of pruning the search tree.  
Concludes that it is still an open problem as to whether the problem has an exact 
algorithm with time-complexity       . 

 
GRAPH CLUSTERING 

 
65. A. De Santis, G. Di Crescenzo, O. Goldreich, G. Persiano.  “The Graph Clustering 

Problem has a Perfect Zero-Knowledge Interactive Proof.”  Information Processing 

Letters 69(4):  201-206, 1999. 
 
Notes:  Develops a perfect zero-knowledge interactive proof system for the problem 
based on four subprotocols:  the first two show that the input graphs fall into exactly c 
clusters, the last two show that the cluster sizes are exactly the positive integers 
specified. 
 

66. O. Goldreich.  “The Graph Clustering Problem has a Perfect Zero-Knowledge Proof.”  

Theory of Crypto Library:  1996. 
 
Notes:  Presents a proof (no protocol) based on the threshold formula that a perfect 
zero-knowledge proof exists for the problem.  The proof is valid for inputs with at 
most 5 graphs.   
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GRAPH K-COLORABILITY 

 
67. H. Al-Omari, K.E. Sabri.  “New Graph Coloring Algorithms.”  American Journal of 

Mathematics and Statistics, 2(4):  439-441, 2006. 
 
Notes:  Proposes and discusses two new heuristic graph coloring algorithms.  
Compares them against basic existing algorithms such as first fit and concludes that 
the new heuristic algorithms perform better. 
 

68. C. Avanthay, A. Hertz, N. Zufferey.  “A Variable Neighborhood Search for Graph 

Coloring.”  European Journal of Operational Research, 151:  379-388, 2003. 
 
Notes:  Introduces and discusses the variable neighborhood search (VNS) algorithm 
for the graph coloring problem.  Compares VNS with Tabucol and GH (genetic 
hybrid) using the DIMACS benchmark graphs. 
 
 

69. I. Blochliger, N. Zufferey.  “A Graph Coloring Heuristic Using Partial Solutions and 

a Reactive Tabu Scheme.”  Computers and Operations Research, 35:  960-975, 2008. 
 
Notes:  Introduces and discusses four new algorithms based on PartialCol.  Tested 
against and compared to GH and MMT algorithms on some well-known benchmark 
graphs.  Compares the best colorings found by each algorithm. 
 

70. M. Blum.  “How to Prove a Theorem So No One Else Can Claim It.”  Proceedings of 

the International Congress of Mathematicians:  1444-1451, 1986. 
 
Notes:  Outlines a zero-knowledge proof system for the graph 3-colorability problem 
using locked boxes.  Discusses briefly Goldreich, Micali, and Wigderson‟s (1991) 
zero-knowledge proof system for 3-colorability. 
 

71. M. Blum, P. Feldman, S. Micali.  “Noninteractive Zero Knowledge and its 

Applications.”  Proc. of 20
th

 STOC:  103-112, 1988. 
 
Notes:  Outlines a noninteractive zero-knowledge proof of 3-colorability based on the 
quadratic residue assumption (number theory).  Discusses the limitations of the 
single-theorem protocol, and improves the protocol to a more general noninteractive 
zero-knowledge proof for 4-colorability. 
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72. D. Brelaz.  “New Methods to Color the Vertices of a Graph.”  Communications of the 

ACM, 22(4):  251-256, April 1979. 
 
Notes:  Introduces and discusses the DSATUR algorithm.  Contains a comparison and 
testing of three versions of DSATUR against the algorithms that were current at the 
time. 
 

73. A. Coja-Oghlan, A. Taraz.  “Exact and Approximative Algorithms for Coloring G(n, 

p).”  Random Structures and Algorithms, 24(3):  259-278, 2004. 
 
Notes:  Discusses optimal and approximative coloring algorithms for random graphs 
G(n, p).  Presents polynomial-time optimal algorithms for specific ranges of values 
for p. 

 
74. I. Devarenne, A. Caminada, H. Mabed.  “Analysis of Adaptive Local Search for 

Graph Coloring Problem.”  The 6
th

 Metaheuristics International Conference:  1204-1 
– 1204-6, 2005. 
 
Notes:  Introduces and discusses a new local search method M/L/D/C.  Compares 
M/L/D/C with the mutation and selection algorithm and the tabu search algorithm 
(both by Dorne and Hao).  Analysis and comparison done on CNET instances of the 
graph coloring problem. 
 

75. I. Devarenne, H. Mabed, A. Caminada.  “Optimization by Extension-Restriction 
Neighborhood in Local Search:  Application to Graph Coloring Problem.”  Proc. of 

20
th

 European Simulation and Modeling Conference:  Oct. 2006. 
 
Notes:  Presents a new local search algorithm and compares it with other algorithms 
that implement either partial neighborhood exploration (local search) or total 
neighborhood exploration (Tabu search).  Evaluates the new algorithm on the 
DIMACS graphs and compares it with DSATUR, AMACOL, and several tabu 
methods. 
 

76. I.M. Diaz, P. Zabala.  “A Branch-and-Cut Algorithm for Graph Coloring.”  Proc. of 

the Computational Symp. on Graph Coloring and its Generalization:  2002. 
 
Notes:  Introduces and discusses a branch-and-cut algorithm based on integer linear 
programming.  Compares the new algorithm with DSATUR.  Concludes that the new 
algorithm was able to solve more instances of the graph coloring problem than 
DSATUR given a 2-hour time limit. 
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77. R. Dorne, J.K. Hao.  “A New Genetic Local Search Algorithm for Graph Coloring.”  

Lecture Notes in Computer Science, 1498:  745-754, 1998. 
 
Notes:  Presents a new genetic local search algorithm based on independent sets and 
Tabu search.  Tests and compares the new algorithm on DIMACS benchmarks 
against XRLF, EDM, and Fleurent and Ferland‟s algorithm.  While the algorithm is 

slower, it is able to find better colorings the other algorithms in the graphs that are 
analyzed. 
 

78. R. Dorne, J.K. Hao.  “3:  Tabu Search for Graph Coloring, T-Coloring and Set T-
Colorings.”  Metaheuristics ‟98:  Theory and Applications.  Kluwer Academic 
Publishers:  33-48, 1998. 
 
Notes:  Introduces the algorithm GTS (Generic Tabu Search).  Compares the 
algorithm against Fleurent and Ferland, EDM, and XRLF.  Shows mixed results on 
the performance of the algorithm. 
 

79. P. Galinier, J.K. Hao.  “Hybrid Evolutionary Algorithms for Graph Coloring.”  

Journal of Combinatorial Optimization, 3:  379-397, 1999. 
 
Notes:  Introduces and discusses the hybrid evolutionary algorithms (HEAs) „HCA‟ 

for the graph coloring problem.  Tests and compares HCA to the Tabu search 
algorithm, against which HCA is shown to outperform in both power and speed. 
 

80. P. Galinier, A. Hertz.  “A survey of local search methods for graph coloring.”  

Computers and Operations Research, 33:  1547-2562, 2006. 
 
Notes:  Discusses several graph coloring algorithms, including Tabucol, which (even 
though over 20 years old) is still frequently used either alone or as part of a hybrid 
algorithm.  Highlights the differences between different algorithm methods. 
 

81. P. Galinier, A. Hertz, N. Zufferey.  “An Adaptive Memory Algorithm for the k-
Coloring Problem.”  Discrete Applied Mathematics, 156(2):  267-279, 2008. 
 
Notes:  Introduces, describes, and discusses Amacol.  Compares and tests Amacol 
against Tabucol, GH, DSATUR, Long_TABU, and Short_TABU on the DIMACS 
graphs.  Concludes that Amacol is competitive with the existing algorithms.   
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82. O. Goldreich.  Foundations of Cryptography:  Fragments of a Book.  Weizmann 
Institute of Science:  1995. 

 
Notes:  Presents the same protocol as most other references with a thorough 
description and proof that the protocol is a zero-knowledge proof system.  Also 
contains a discussion in the section‟s concluding remarks on constant round and 
efficient protocols for G3C, as well as explicitly constructs a round efficient zero-
knowledge proof system for G3C. 
 

83. O. Goldreich, A. Kahan.  “How to Construct Constant-Round Zero-Knowledge Proof 
Systems for NP.”  Journal of Cryptology, 9:  167-189, 1996. 
 
Notes:  Describes and outlines an efficient (using a constant number of rounds) zero-
knowledge proof system for the graph colorability problem and proves that it satisfies 
the necessary properties.   
 

84. O. Goldreich, S. Micali, A. Wigderson.  “Proofs that Yield Nothing but Their 

Validity or All Languages in NP Have Zero-Knowledge Proof Systems.”  Journal of 

the ACM 38(1):  691-729, 1991. 
 
Notes:  Outlines two protocols:  one using locked boxes and keys (for understanding), 
the other using a digital implementation (for practical use).  Contains a thorough 
proof that the protocol is in fact a zero-knowledge interactive proof, as well as a 
discussion of how to construct constant-round zero-knowledge proof systems for the 
problem. 
 

85. D. Grigoriev, V. Shpilrain.  “Zero-Knowledge Authentication Schemes from Actions 
on Graphs, Groups, or Rings.” 
 
Notes:  Outlines a protocol for k-colorability that is based on sending a commitment 
to the coloring through an isomorphic copy of the graph, since colorability is 
preserved under isomorphism.   
 

86. A. Hertz, M. Plumettaz, N. Zufferey.  “Variable Space Search for Graph Coloring.”  

Discrete Applied Mathematics, 156(13):  2551-2560, July 2008. 
 
Notes:  Introduces the variable space search (VSS) algorithm as an extension of the 
variable neighborhood search (VNS) algorithm.  Runs tests on some graphs from the 
DIMACS challenge, and compares VSS with TabuCol, PartialCol, GH, MOR and 
MMT algorithms. 
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87. H.H. Hoos, T. Stutzle.  “Local Search Algorithms for SAT:  An Empirical 

Evaluation.”  Journal of Automated Reasoning, 24(4):  421-481, 2000. 
 
Notes:  Contains some algorithmic discussion of the graph colorability problem 
through transformations from the satisfiability problem.  Also contains results from 
testing done on solving graph coloring instances by GSAT, Novelty, and WalkSAT. 
 

88. D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon.  “Optimization by 

Simulated Annealing:  An Experimental Evaluation;  Part II, Graph Coloring and 
Number Partitioning.”  Operations Research, 39(3):  378-406, 1991. 
 
Notes:  Presents a few different algorithms for graph coloring based on simulated 
annealing.  Most of the algorithms require large amounts of time to produce colorings 
that are close to optimal.  Includes experimental data on random graphs of 1000 
nodes. 
 

89. W. Klotz.  “Graph Coloring Algorithms.”  2002.  Available at:  http://www.math.tu-
clausthal.de/Arbeitsgruppen/Diskrete-Optimierung/publications/2002/gca.pdf  
 
Notes:  Discusses several different existing algorithms, such as RLF and DSATUR, 
and introduces a new algorithm based on a heuristic called BSC:  Backtracking 
Sequential Coloring.  Compares the runtimes and quality of solution for these 
algorithms by testing on random graphs on 60 vertices with different edge-densities. 
 

90. S. G. Krantz.  “Zero Knowledge Proofs.”  Mathematical Adventures for Students and 

Amateurs, Spectrum Series, MAA:  Washington, D.C., 2006. 
 
Notes:  A very basic discussion of 4-colorability with a focus on the encryption 
methods used.  Contains an introduction to RSA encryption and the idea of zero-
knowledge proof systems. 
 

91. K. Kurosawa, K. Takai.  “A Comment on NIZK for 3-Colorability.”  Singapore 

ICCS/ISITA:  274-278, 1992. 
 
Notes:  Outlines and proves a more efficient noninteractive zero knowledge proof 
system for 3-colorability based on M. Blum‟s “Noninteractive Zero Knowledge and 

its Applications.”  Protocol is very similar to Blum‟s with slight modifications. 
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92. A. Lim, Y. Zhu, Q. Lou, B. Rodrigues.  “Heuristic Methods for Graph Coloring 

Problems.”  ACM Symp. on Applied Computing:  933-939, 2005. 
 
Notes:  Introduces a new algorithm based on Tabu search combined with an optimizer 
to fix priorities.  Tests and compares the algorithm against some basic algorithms.  
Testing is done on benchmark geometric graphs from COLORING ‟02.  
 

93. D.W. Matula, L.L. Beck.  “Smallest-Last Ordering and Clustering and Graph 
Coloring Algorithms.”  Journal of the Association for Computing Machinery, 30(3):  
417-427, July 1983. 
 
Notes:  Goes over the basic ideas of smallest-last ordering for a greedy algorithm.  
Presents upper bounds on the number of colors required by the algorithm for specific 
classes of graphs. 
 

94. J. Pieprzyk, T. Hardjono, J. Seberry.  “Zero Knowledge Proof Systems.”  From 

Fundamentals of Computer Security.  Springer-Verlag:  409-431, 2003. 
 
Notes:  Outlines an interactive proof for 3-colorability, which relies on the 
assumption that there is a secure probabilistic encryption, as well as a proof that the 
protocol is computational zero knowledge.  Discusses why either encryption or a bit 
commitment scheme is a necessary ingredient in a computationally zero-knowledge 
proof system. 
 

95. J. Rothe.  “Heuristics versus Completeness for Graph Coloring.”  Chicago Journal of 

Theoretical Computer Science, 2000(1):  1-16, 2000. 
 
Notes:  Studies the complexity of the graph coloring problem when considering input 
graphs that can be solved by a given heuristic A (A-G3C).  All heuristics are based on 
sequential algorithms.  Proves that A-G3C is NP-complete for the algorithms 
considered. 
 

96. G. I. Simari.  “A Primer on Zero Knowledge Protocols.”  Universidad Nacional del 

Sur:  June 27, 2002. 
 
Notes:  Introduces and defines the concept of zero-knowledge proof systems.  
Outlines the standard zero-knowledge proof system in which the verifier selects one 
edge at random.  Discusses why this is a zero-knowledge proof system. 
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97. T. Stutzle.  “Introduction to Stochastic Local Search.”  Presentation given at ANTS 

2006.  Available at:  
http://iridia.ulb.ac.be/ants2006/tutorial_slides/stuetzle_tutorial_slides.pdf 
 
Notes:  Gives an overview of stochastic search methods such as simulated annealing, 
Tabu search, dynamic local search, and iterative local search (and others).  Discusses 
Tabu search for the graph coloring problem. 
 

98. C. R. Subramanian, M. Furer, C. E. Madhavan.  “Algorithms for Coloring Semi-
Random Graphs.”  :  125-158, 1998. 
 
Notes:  Shows the existence of and describes polynomial-time algorithms that almost 
surely succeed in coloring semi-random graphs GSB(n, p, k) for certain ranges of 
values for p, i.e. a graph supplied by an opponent that will add each edge with 
probability p or 1-p.  

 
EQUITABLE COLORING 

 
99. H. Furmańczyk, M. Kubale.  “The Complexity of Equitable Vertex Coloring of 

Graphs.”  Journal of Applied Computer Science, 13(2):  95-107, 2005. 
 
Notes:  Introduces the equitable coloring problem and discusses the complexity of the 
problem.  Lists which graphs can be equitably colored in polynomial time.  Also 
introduces two polynomial-time heuristic algorithms based on a greedy method.  

 
100. W. Meyer.  “Equitable Coloring.”  The American Mathematical Monthly, 80(8):  920-

922, Oct. 1973. 
 
Notes:  Introduces the notion of equitable coloring and proves some basic results on 
equitable coloring numbers of graphs. 
 

101. “Equitable Coloring.”  Wikipedia:  The Free Encyclopedia.  Available at:  
http://en.wikipedia.org/wiki/Equitable_coloring 
 
Notes:  Contains a good introduction to the concept of equitable coloring with 
examples.  Discusses the NP-completeness of the problem and applications.   
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GRAPH K-EDGE-COLORABILITY 

 
102. R. Venkatesan, L. Levin.  “Random Instances of a Graph Coloring Problem are 

Hard.”  Proc. of the Annual ACM Symposium on Theory of Computing:  217-222, 
1988. 
 
Notes:  Looks at the graph edge-coloring problem on random digraphs by its 
inversion problem:  color the edges of the graph so as to obtain the specified coloring.  
Proves that these problems are hard on average by reducing it to the random tiling 
problem (RTP) and forcing the solver to transform the RTP solution into an edge-
coloring of the graph. 

 
INDEPENDENT SETS/MAXIMUM CLIQUE 

 
103. R. Battiti, M. Brunato.  “R-Evo:  A Reactive Evolutionary Algorithm for the 

Maximum Clique Problem.”  Universita Degli Studi di Trento, Technical Report 
DIT-07-034:  May 31, 2007. 
 
Notes:  Introduces R-Evo and RLS-Evo and compares them with EA/G and RLS for 
the maximum clique problem.  Also discusses model-based algorithms.  Contains 
data comparing runtime and performance of EA/G against R-Evo on the DIMACS 
graphs. 
 

104. I. Bomze, M. Budinich, P.M. Pardalos, M. Pelillo.  “The Maximum Clique Problem.”  

Handbook of Combinatorial Optimization.  Kluwer Academic Publishers, D.Z. Du 
and P.M. Pardalos (Eds.):  1999. 
 
Notes:  An overview of the different types of heuristic algorithms for solving the 
maximum clique problem.  Tests the algorithms on the DIMACS graphs. 
 

105. P. Caballero-Gil.  “Zero-Knowledge Proof for the Independent Set Problem.”  IEICE 

Trans. on Fund. of Electronics, Communications, and Computer Science:  1301-1302, 
May 2005. 

 
Notes:  Presents a zero-knowledge proof system for the independent set problem with 
a commitment scheme based on the discrete log problem.  Discusses the 
efficiency/complexity of the protocol. 
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106. L. Cavique, C. Rego, I. Themido.  “A Scatter Search Algorithm for the Maximum 

Clique Problem.”  Essays and Surveys in Metaheuristics.  Kluwer Academic 
Publishers:  227-244, 2001. 
 
Notes:  Introduces a new algorithm based on scatter search (to explore new regions), 
and tabu search (to improve the new solutions found).  Tests the SS algorithm on the 
DIMACS graphs against several different tabu search algorithms. 
 

107. Y. Desmedt, Y. Wang.  “Efficient Zero-Knowledge Proofs for Some Practical Graph 
Problems.”  Lecture Notes in Computer Science:  Security in Communication 

Networks, 2576:  290-302, 2003. 
 
Notes:  Discusses the independent set problem as a special case of the k-independent 
set problem.  Outlines and proves zero knowledge protocols for both of these 
problems, and then exhibits a transformation from the k-independent set problem to 
the independent set problem. 
 

108. C. Friden, A. Hertz, D. de Werra.  “Tabaris:  An Exact Algorithm Based on Tabu 
Search for Finding a Maximum Independent Set in a Graph.”  Computers Opns. Res., 
17(5):  437-445, 1990. 
 
Notes:  Describes, outlines, and discusses the Tabaris algorithm for finding a 
maximum independent set in a graph.  Also compares Tabaris to another algorithm 
called “BALAS”.  Tests the algorithms on random graphs that vary in both size and 
density. 

 
109. X. Geng, J. Xu, J. Xiao, L. Pan.  “A Simple Simulated Annealing Algorithm for the 

Maximum Clique Problem.”  Information Sciences, 177:  5064-5071, 2007.   
 
Notes:  Introduces and tests a simulated annealing algorithm on all 80 DIMACS 
maximum clique problem instances.  Tests the new algorithm against a recent 
efficient algorithm by Xu/Ma (ESA), and also against a trust region heuristic 
algorithm by Stanislav/Busygin (TR). 
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110. A. Grosso, M. Locatelli, W. Pullan.  “Simple Ingredients Leading to Very Efficient 

Heuristics for the Maximum Clique Problem.”  Journal of Heuristics, 14:  587-612, 
2008. 
 
Notes:  Discusses iterated local search maximum clique problem algorithms, 
including DLS.  Introduces two versions of a new algorithm aimed at improving the 
currently existing algorithms – one version with a random selection rule and one with 
a ranking selection rule.   
 

111. P. Hansen.  N. Mladenovic, D. Urosevic.  “Variable Neighborhood Search for the 

Maximum Clique.”  Discrete Applied Mathematics, 145:  117-125, 2004. 
 
Notes:  Introduces a new metaheuristic algorithm based on variable neighborhood 
search.  Tests on DIMACS graphs against genetic algorithms, continuous based 
heuristics, tabu search, and RLS.  Concludes that VNS is competitive with the current 
algorithms.   
 

112. D.S. Johnson, and M.A. Trick.  Volume 26:  DIMACS Series in Discrete Mathematics 

and Theoretical Computer Science.  American Mathematical Society, 1996. 
 

Notes:  Contains several articles on the maximum clique problem by various authors.   
 

113. K. Katayama, A. Hamamoto, H. Narihisa.  “An Effective Local Search for the 

Maximum Clique Problem.”  Information Processing Letters, 95(5):  503-511, Sept. 
2005. 
 
Notes:  Introduces the KLS algorithm, based on variable depth search (generalization 
of local search).  Tests KLS on DIMACS benchmark graphs for the maximum clique 
problem on up to 4000 nodes against GENE (genetic local search), ITER (iterated 
local search), and RLS. 
 

114. X. Liu, A. Sakamoto, T. Shimamoto.  “A Genetic Algorithm for Maximum 

Independent Set Problems.”  IEEE International Conference on Systems, Man, and 

Cybernetics, 3:  1916-1921, Oct. 1996. 
 
Notes:  Introduces a genetic algorithm for ISP and compares it with GMCA and 
CBH.  Tests the algorithms on the DIMACS benchmark graphs for the maximum 
clique problem.   
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115. E. Marchiori.  “A Simple Heuristic Based Genetic Algorithm for the Maximum 

Clique Problem.”  Proc. of the 1998 ACM Symp. on Applied Computing:  366-373, 
1998. 
 
Notes:  Introduces the HGA algorithm and tests it on the DIMACS benchmark graphs 
for the maximum clique problem against tabu search algorithms and the genetic 
algorithm GMCA.  Concludes that HGA is competitive with the algorithms tested. 
 

116. P.R.J. Östergård.  “A Fast Algorithm for the Maximum Clique Problem.”  Discrete 

Applied Mathematics, 120:  197-207, 2002. 
 
Notes:  Introduces a branch-and-bound algorithm using a vertex order from a coloring 
as well as pruning strategies.  Tests the algorithm on some of the DIMACS 
benchmark graphs for the maximum clique problem and also on random graphs.   
 

117. W. Pullan, H.H. Hoos.  “Dynamic Local Search for the Maximum Clique Problem.”  

Journal of Artificial Intelligence Research, 25:  159-185, 2006. 
 
Notes:  Introduces DLS-MC (stochastic local search algorithm).  Describes the five 
current best heuristic algorithms.  Contains results on testing DLS-MC on all 80 
DIMACS instances for the maximum clique problem.  Compared DLS-MC with 
DAGS, GRASP, k-opt, RLS, GENE, ITER, and QUALEX-MS. 
 

118. F. Rossi, S. Smriglio.  “A Branch-and-Cut Algorithm for the Maximum Cardinality 
Stable Set Problem.”  Operations Research Letters, 28:  63-74, 2001. 
 
Notes:  Introduces a new branch-and-cut algorithm for the independent set problem.  
Tests the algorithm on DIMACS benchmark graphs for the maximum clique problem 
and compares it with other branch-and-bound algorithms.   
 

119. E. Tomita, T. Kameda.  “An Efficient Branch-and-Bound Algorithm for Finding a 
Maximum Clique with Computational Experiments.”  Journal of Global 

Optimization, 37:  95-111, 2007. 
 
Notes:  Introduces MCR algorithm, which uses approximate coloring and sorting of 
the vertices.  Tests the algorithm on random graphs up to 15,000 nodes and DIMACS 
benchmark graphs for the maximum clique problem against dfmax, New, and 
COCR(COC) algorithms. 
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120. E. Tomita, T. Seki.  “An Efficient Branch-and-Bound Algorithm for Finding a 
Maximum Clique.”  Lecture Notes in Computer Science, 2731:  278-289, 2003. 
 
Notes:  Introduces the algorithm MCQ, which is approved upon later by the algorithm 
MCR.  Contains testing done on DIMACS graphs for the maximum clique problem 
against dfmax, New, and COCR algorithms. 
 

121. Q. Zhang, J. Sun, E. Tsang.  “An Evolutionary Algorithm with Guided Mutation for 
the Maximum Clique Problem.”  IEEE Transactions on Evolutionary Computation, 
9(2):  192-200, April 2005. 
 
Notes:  Introduces the EA/G algorithm.  Tests EA/G on the DIMACS benchmark 
graphs for the maximum clique problem against HGA and MIMIC.  Concludes that 
EA/G is competitive with the other algorithms considered. 
 

SATISFIABILITY 

 
122. “Satisfiability Testing or How to Solve Sudoku Puzzles – The DPLL Method.”  From 

the International Center for Computational Logic.  Available at:  
http://www.computational-logic.org/iccl/master/lectures/summer07/sat/slides/dpll.pdf 
 
Notes:  Gives a description of the satisfiability problem and an overview of the DPLL 
method for solving instances of the satisfiability problem. 
 

123. G. Brassard, C. Crepeau.  “Non-Transitive Transfer of Confidence:  A Perfect Zero-
Knowledge Interactive Protocol for SAT and Beyond.”  Proc. of the 27

th
 Annual 

Symp. on Foundations of Computer Science:  188-195, 1986. 
 
Notes:  Outlines a basic zero-knowledge proof system for the satisfiability problem.  
Focuses on the commitment scheme used. 
 

124. G. Brassard, D. Chaum, C. Crepeau.  “Minimum Disclosure Proofs.”  Journal of 

Computer and System Sciences, 37(2):  156-189, Oct. 1988. 
 
Notes:  Describes and illustrates a zero-knowledge proof system for the satisfiability 
problem.  Discusses how the protocol satisfies the properties necessary for a zero-
knowledge protocol. 
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125. S. Cook, D. G. Mitchell.  “Finding Hard Instances of the Satisfiability Problem:  A 

Survey.”  DIMACS Series in Discrete Mathematics and Theoretical Computer 

Science, 35:  1-17, 1997. 
 
Notes:  Details the algorithms DPLL, GSAT, and WalkSAT.  Also does some testing 
and analysis of the algorithms.  Has some discussion on the construction of hard 
satisfiability instances. 

 
126. I. Damgard.  “Non-Interactive Circuit Based Proofs and Non-Interactive Perfect Zero-

Knowledge with Preprocessing.”  Proc. of Eurocrypt:  341-355, 1992. 
 
Notes:  Thoroughly outlines a noninteractive proof system for the satisfiability 
problem and proves that it satisfies the necessary properties.  Proves that the proof 
system is zero-knowledge under the QRA. 
 

127. C. Dwork, U. Feige, J. Killian, M. Naor, M. Safra.  “Low communication 2-prover 
zero-knowledge proofs for NP.”  Proc. of the 12

th
 Annual International Cryptology 

Conference on Advances in Cryptology:  215-227, 1992. 
 
Notes:  Discusses, outlines, and proves a zero-knowledge proof system for the 
satisfiability problem with two provers and one verifier. 

 
128. B. Ferris, J. Froehlich.  “WalkSAT as an Informed Heuristic to DPLL in SAT 

Solving.”  Artificial Intelligence Graduate Course taught by Professor Dan Weld:  

2005.  Available at: 
http://www.cs.washington.edu/homes/jfroehli/publications/WalkSAT-DPLL.pdf 
 
Notes:  Compares WalkSAT, a stochastic local search algorithm, with DPLL, a 
systematic search algorithm.  WalkSAT is faster, but incomplete (cannot prove 
unsatisfiability), while DPLL-type algorithms are complete but slower. 
 

129. E. Goldberg, Y. Novikov.  “BerkMin:  A Fast and Robust SAT-Solver.”  Proc. of 

DATE ’02:  142-149, 2002. 
 
Notes:  Compares a new algorithm (BerkMin) with GRASP, SATO, and Chaff, which 
it is based off of.  Tests BerkMin against these other satisfiability problem solvers and 
concludes that BerkMin is more robust (can solve more instances), but is not always 
faster. 
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130. H.H. Hoos, T. Stutzle.  “Local Search Algorithms for SAT:  An Empirical 
Evaluation.”  Journal of Automated Reasoning, 24(4):  421-481, 2000. 
 
Notes:  Introduces, discusses, compares and evaluates the stochastic local search 
algorithms WalkSAT and GSAT thoroughly. 
 

131. H. Jia.  “Hard Instances with Hidden Solutions.”  PhD Dissertation, University of 

New Mexico:  December, 2007. 
 
Notes:  Introduction to several algorithms that exist for solving instances of the 
satisfiability problem and 3-SAT, as well as a proposed method for generating 
difficult test cases for these algorithms.  Algorithms described:  DPLL, WalkSAT, 
zChaff, and SP. 
 

132. J. Marques-Silva.  “The Impact of Branching Heuristics in Propositional Satisfiability 

Algorithms.”  Proc. of the 9
th

 Portuguese Conference on Artificial Intelligence:  

Progress in Artificial Intelligence:  62-74, 1999. 
 
Notes:  Describes several branching heuristics that are used in effective satisfiability 
solvers such as GRASP, SATO, and rel_sat.  Runs tests on these algorithms against 
other algorithms that do not use the same techniques to examine their effectiveness. 
 

133. J.P. Marques-Silva, K.A. Sakallah.  “GRASP:  A Search Algorithm for Propositional 

Satisfiability.”  IEEE Transactions on Computers, 48(5):  506-521, May 1999. 
 
Notes:  Introduces, outlines, and discusses the GRASP algorithm for solving the 
satisfiability problem.  Contains experimental results obtained from testing GRASP 
against several other well-known algorithms such as DPLL, GSAT, etc. 
 
 

134. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik.  “Chaff:  Engineering 
an Efficient SAT Solver.”  Proceedings of the 38

th
 Conference on Design 

Automation:  530-535, 2001. 
 
Notes:  Describes the Chaff algorithm for solving the satisfiability problem.  Also 
includes a description of the DPLL algorithm as comparison, with some comments on 
other currently popular algorithms. 
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135. D.N. Pham, C. Gretton.  “gNovelty
+
.”  From the SAT 2007 Competition web site.  

Available at:  http://www.satcompetition.org/2007/gNovelty+.pdf 
 
Notes:  Introduces and discusses the satisfiability solver gNovelty+, based off of the 
first and second place winners in the random category of the 2005 SAT competition.  
The program was used in the 2007 SAT competition (won gold in the random SAT 
category). 

 
136. H. Zhang.  “SATO:  An Efficient Propositional Prover.”  Proc. of the 14

th
 

International Conference on Automated Deduction:  272-275, 1997. 
 
Notes:  Describes the update to SATO 3.0 and contains some results of testing SATO 
3.0 against past versions of SATO as well as other popular satisfiability solver 
algorithms, such as DPLL, GRASP, etc.  Concludes that SATO either performs best 
or second best on all sets of data considered. 
 

MINIMUM LABEL SPANNING TREE PROBLEM 

 
137. T. Brüggemann, J. Monnot, G.J. Woeginger.  “Local Search for the Minimum Label 

Spanning Tree Problem with Bounded Color Classes.”  Operations Research Letters, 
31(3):  195-201, 2003.   
 
Notes:  Discusses the complexity of the minimum label spanning tree problem when 
every color appears at most r times in the input graph.  Introduces local search 
algorithms for this modified problem.   
 

138. R. Cerulli, A. Fink, M. Gentili, S. Voß.  “Metaheuristics Comparison for the 

Minimum Labeling Spanning Tree Problem.”  The Next Wave in Computing, 
Optimization, and Decision Technologies.  G. Golden, S. Raghavan, E. Wasil (Eds.), 
Springer-Verlag:  93-106, 2005.   
 
Notes:  Introduces new metaheuristic algorithms for the minimum label spanning tree 
problem.  The metaheuristics implemented are SA, reactive tabu search, the Pilot 
method, and VNS.  Compares the new algorithms with MVCA.   
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139. R.S. Chang, S.J. Leu.  “The Minimum Labeling Spanning Trees.”  Information 

Processing Letters, 63(5):  277-282, 1997. 
 
Notes:  Proves that the minimum label spanning tree problem is an NP-complete 
problem and introduces two algorithms for approximating the solution.  This paper 
was the first to consider this problem. 
 

140. S. Consoli.  “The Development and Application of Metaheuristics for Problems in 

Graph Theory:  A Computational Study.”  Thesis for PhD in School of Information 

Systems, Computing and Mathematics, Brunel University, UK:  November, 2008. 
 

Notes:  Introduces new algorithms for the minimum label spanning tree problem.  
These include GRASP, VNS, and a hybrid local search method.  The new algorithms 
are compared to MGA (modified genetic algorithm) and the Pilot method.   

 
141. S. Consoli, K. Draby-Downman, N. Mladenovic, J.A.M. Perez.  “Greedy 

Randomized Adaptive Search and Variable Neighbourhood Search for the Minimum 
Labelling Spanning Tree Problem.”  European Journal of Operational Research, 196:  
440-449, 2009. 

 
Notes:  Introduces GRASP and VNS algorithms for the minimum label spanning tree 
problem.  Tests the algorithms against the Pilot algorithm and several others.  Testing 
is done on graphs of order up to 500 and label sets of size up to 625 labels. 

 
142. S.O. Krumke, H.C. Wirth.  “On the Minimum Label Spanning Tree Problem.”  

Information Processing Letters, 66(2):  81-85, 1998. 
 
Notes:  Proves that there cannot exist a polynomial time constant factor 
approximation for the minimum label spanning tree problem unless P = NP.  Tests the 
performance of the algorithms previously created by Chang and Leu (the authors that 
first introduced the problem).   

 
143. J. Nummela, B.A. Julstrom.  “An Effective Genetic Algorithm for the Minimum-

Label Spanning Tree Problem.”  Proc. of the 8
th

 Annual Conference on Genetic and 

Evolutionary Computation:  553-558, 2006. 
 
Notes:  Introduces several new genetic algorithms for the minimum label spanning 
tree problem.  Tests and compares the new algorithms against MVCA on random 
graphs.   
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144. Y. Xiong.  “The Minimum Labeling Spanning Tree Problem and Some Variants.”  

Thesis for PhD at the University of Maryland:  2005. 
 
Notes:  Contains an introduction to the minimum label spanning tree problem.  
Discusses a particularly difficult class of graphs for the MVCA algorithm.  Introduces 
new algorithms for the problem.  Tests and compares the new algorithm on random 
graphs. 
 

145. Y. Xiong, B. Golden, E. Wasil.  “Improved Heuristics for the Minimum Label 

Spanning Tree Problem.”  IEEE Transactions on Evolutionary Computation, 10(6), 
700-703, 2006.   
 
Notes:  Introduces new algorithms that are either modified MVCA or modified 
genetic algorithms.  Tests the new algorithms on random graphs and compares them 
to the unmodified  versions of MVCA and genetic algorithms.   
 

146. Y. Xiong, B. Golden, E. Wasil.  “A One-Parameter Genetic Algorithm for the 
Minimum Labeling Spanning Tree Problem.”  IEEE Transactions on Evolutionary 

Computation, 9(1):  55-60, 2005. 
 

Notes:  Introduces a one-parameter genetic algorithm for the minimum label spanning 
tree problem.  Tests and compares the new algorithm to MVCA.  Concludes that the 
new algorithm is competitive with MVCA.   

 
147. Y. Xiong, B. Golden, E. Wasil.  “Worst-Case Behavior of the MVCA Heuristic for 

the Minimum Labeling Spanning Tree Problem.”  Operations Research Letters, 
33(1):  77-80, 2005. 

 
Notes:  Analyzes the MVCA algorithm and presents a new worst-case ratio for the 
algorithm.  Introduces a family of graphs that obtain the new ratio, proving that the 
ratio cannot be reduced further. 

 
GRAPH PARTITIONING PROBLEM 

 
148. R. Baños, C. Gil, J. Ortega, F.G. Montoya.  “Multilevel Heuristic Algorithm for 

Graph Partitioning.”  Lecture Notes in Computer Science, 2611:  143-153, 2003. 
 

Notes:  Introduces a multilevel algorithm for solving the graph partitioning problem.  
Tests and compares the new algorithm with METIS, another multilevel algorithm for 
the problem, on the benchmark graphs maintained by Walshaw.   
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149. T.N. Bui, B.R. Moon.  “Genetic Algorithm and Graph Partitioning.”  IEEE 

Transactions on Computers, 45(7):  841-855, July 1996. 
 

Notes:  Introduces hybrid genetic algorithms for the graph partitioning problem.  
Tests and compares the algorithms against the multistart KL algorithm and the SA 
algorithm on the graphs used by Johnson, et al., 1989.   

 
150. A. Felner.  “Finding Optimal Solutions to the Graph Partitioning Problem with 

Heuristic Search.”  Annals of Mathematics and Artificial Intelligence, 45(3-4):  293-
322, Dec. 2005. 

 
Notes:  Formats the graph partitioning problem as a search problem and then applies 
heuristic methods to solve the problem.  The algorithm does not return suboptimal 
solutions.  Tests and compares this approach with the current best algorithms on 
randomly generated graphs.   

 
151. L. Grady, E.L. Schwarts.  “Isoperimetric Partitioning:  A New Algorithm for Graph 

Partitioning.”  SIAM Journal of Scientific Computing, 27(6):  1844-1866, 2006. 
 

Notes:  Introduces a new algorithm for the graph partitioning problem based on 
optimization of the combinatorial isoperimetric constant.  Tests and compares the 
algorithm against the spectral partitioning method and METIS on various classes of 
graphs.  Concludes that the algorithm gives slightly higher averages than the other 
algorithms (like multilevel KL).   

 
152. D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon.  “Optimization by 

Simulated Annealing:  an Experimental Evaluation, Part I, Graph Partitioning.”  

Operations Research, 37:  865-892, 1989. 
 

Notes:  Introduces a new simulated annealing algorithm for the graph partitioning 
problem.  Compares it to existing algorithms like KL and local optimization methods 
by testing the algorithms on both standard and non-standard random graphs.   

 
153. B.W. Kernighan, S. Lin.  “Partitioning Graphs.”  The Bell System Technical Journal:  

291-307, Feb. 1970.   
 

Notes:  Introduces the heuristic Kernighan-Lin algorithm.  Concludes that the 
algorithm is practical for solving large instances of the graph partitioning problem. 
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154. Y.H. Kim, B.R. Moon.  “Lock-Gain Based Graph Partitioning.”  Journal of 

Heuristics, 10:  37-57, 2004.   
 

Notes:  Introduces the lock-gain based algorithm for the graph partitioning problem.  
Uses a new method for selecting vertices to move between partition classes.  Tests the 
algorithm on benchmark instances from other publications (Johnson, et al., 1989, and 
Bui and Moon, 1996) and compares it to existing algorithms.   

 
155. R.Z. Loureiro, A.R.S. Amaral.  “An Efficient Approach for Large Scale Graph 

Partitioning.”  Journal of Combinatorial Optimization, 13:  289-320, 2007. 
 
Notes:  Introduces some greedy heuristic algorithms for the graph partitioning 
problem.  Tests and compares the algorithm on benchmark instances from the graph 
partitioning archive maintained by Walshaw. 

GRAPH DATABASES 

 

141. The Graph Partitioning Archive.   http://staffweb.cms.gre.ac.uk/~wc06/partition/ 
(accessed July 2010).  Maintained by Chris Walshaw. 

 
Notes:  Database with test sets for the graph partitioning problem. 

 

142. The Stanford GraphBase.  http://www-cs-faculty.stanford.edu/~uno/sgb.html 
(accessed July 2010).  Maintained by Donald Knuth. 

 
Notes:  Database with general graphs for any problem.  Described in: 
 
Knuth, Donald E.  “The Stanford GraphBase:  A Platform for Combinatorial 

Algorithms.”  Proceedings of the 4
th

 Annual ACM-SIAM Symposium on Discrete 

Algorithms, 1993:  41-43. 
 

143. http://www.sergioconsoli.com/MLSTP.htm (accessed August 2009).  Maintained by 
Sergio Consoli.  

 
Notes:  Database with test sets for the minimum label spanning tree problem. 

 

144. The Harwell-Boeing Collection.  http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing/ (accessed July 2010).   

 
Notes:  Database with test sets of matrices for the minimum bandwidth problem. 
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145. TSPLIB.  http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html (accessed July 
2010).  Maintained by Gerhard Reinelt. 

 
Notes:  Contains instances for numerous variations of the traveling salesman problem. 

 
146. The Graph Database.  http://amalfi.dis.unina.it/graph/ (accessed July 2010).  

Maintained by SIVALab. 
 

Notes:  Database with test sets of graphs for the sub-graph isomorphism problem.  
Described in: 
 
De Santo, M., P. Foggia, C. sansone, and M. Vento.  “A Large Database of Graphs 

and Its Use For Benchmarking Graph Isomorphism Algorithms.”  Pattern 

Recognition Letters 24(2003):  1067-1079. 
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